
EditTable Programming Guide

Integrated Computer
Solutions, Incorporated

Copyright © 1997-2009 Integrated Computer Solutions, Inc.
The EditTable™ Programming Guide is copyrighted by Integrated Computer Solutions, Inc., with
all rights reserved. No part of this book may be reproduced, transcribed, stored in a retrieval
system, or transmitted in any form or by any means electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of Integrated Computer Solutions, Inc.

Integrated Computer Solutions, Inc.
54 B Middlesex Turnpike, Bedford, MA 01730
Tel: 617.621.0060
Fax: 617.621.9555
E-mail: info@ics.com

Trademarks
EnhancementPak, EPak, EPak PRO, Builder Xcessory, BX, BX/Ada, Builder Xcessory PRO, BX
PRO, BX/Win Software Development Kit, BX/Win SDK, Database Xcessory, DX, DatabasePak,
DBPak, ViewKit ObjectPak, VKit, ICS Motif, and Ada/Motif are trademarks of Integrated
Computer Solutions, Inc.
EditTable Widget Library, View3D, GraphicObject Library, ChartObject Library and are
trademarks of Interactive Network Technologies, Inc.
All other trademarks are properties of their respective owners.

Fourth printing
January 2009

Contents

How To Use This Manual

Overview .. ix
Organization of This Manual... x
Notation Conventions .. x

Chapter 1—Introduction
Overview ... 1
EditTable Widget... 2

Widget Components .. 2
EditTable Features... 2

Data Handling.. 3
Data Types... 3
Data Formatting... 4
Flexible Data Handling ... 4
Dataless Tables.. 4

Basic Features.. 5
Margins and Table Dimensions... 5
Text Alignment, Size, and Font Type ... 6
Text Editing... 6
Column/Row Formatting... 7
Cursor Movement.. 7

Advanced Features .. 7
User-defined or Automatic Annotation... 7
Inter-cell Grid Separators .. 8
Micro-formatting ... 8
Row/Column Freezing .. 9
Row/Column Visibility and Partial Displays .. 10
Free-style Selection ... 10
Horizontal Columns .. 11
Icon Selection and Display.. 11
Cell Validation and Locking ... 12
Cell Attributes ... 12
Displaying Composite Data (Pointer Data Type).. 12
User-defined Data Formatting... 13
Cell Spanning .. 13
Importing Data from ASCII Files ... 14
EditTable Programming Guide iii

Interactive Move, Copy, and Resize ... 14
Multiple Output Formats... 15
Motif Drag and Drop... 15
DataObject Connection ... 17

Widget in a Cell... 18
Cell Resources... 18
Cell Spanning.. 20

Typical Applications ... 22
Spreadsheets.. 23
Real-time Monitoring and Analysis .. 23
Data Entry and Validation... 24
Database Display and Browsing ... 24

Integration with Other INT Widgets ... 24
Hardcopy Output and Coordinate Mapping (XintCompBase) ... 25
Enhanced Scrolling (XintScroll) ... 25
Graphic Objects (XintGraphic) ... 25
Graphic Object Editing, Storage, and Retrieval (XintEditObject).................................... 26
ChartObject Library .. 28

Instance Network... 28
CompBase Class ... 28
EditObject Widget... 28
EditTable Widget .. 28
Scroll Widget .. 29
Graphic Objects... 29

Creating and Freeing INT Widgets ... 29
Obtaining and Setting Resource Values.. 30

Chapter 2—CompBase Widget Metaclass
Overview ... 31
Inherited Behavior and Resources... 32
CompBase Functions... 33

Chapter 3—EditObject Widget Class
Overview ... 43
Creating an EditObject Widget ... 44
Coordinate System .. 44
Creating And Deleting Objects ... 44

Object Selection .. 44
Object Editing ... 45
Object Display... 45

Input/Output .. 45
iv EditTable Programming Guide

Clipboard ... 45
Locator... 45
EditObject Widget Appearance ... 46
Inherited Behavior and Resources... 46
EditObject Actions .. 52
EditObject Translations ... 55
EditObject Callbacks ... 56
EditObject Functions ... 62

Chapter 4—EditTable Widget
Overview ... 73
Data Organization.. 74

Table Size .. 74
Table Orientation... 74
Data Structures .. 74
Supported Data Types ... 74

Using EditTable with Scroll .. 74
Creating an EditTable Widget ... 75

Displaying a Table... 75
Formatting Data... 75
Updating a Table ... 75
Editing Operations... 75
Table Edit .. 76
Annotation Edits.. 76
Column Edits ... 76
Row Edits .. 76
Cell Edits ... 76
Input Validation... 77
Traversing the Table.. 77
Cutting and Pasting ... 77
Interactive Move, Copy and Resize .. 77
Frozen Columns .. 78
Frozen Rows.. 78
Cell, Column and Row Indices.. 78
Column Annotation ... 78
Row Annotation .. 78
Margin Size Specification ... 79
Sub-tables .. 79
Column and Row Visibility... 79

Drawing Graphics on a Table .. 80
Graphic Object Coordinate System... 80
EditTable Programming Guide v

EditTable Widget Appearance .. 81
EditTable Resources.. 81

Inherited Behavior and Resources .. 82
Defined Resources .. 82
Constraint Resources... 111

Widget in a Cell Example ... 112
 EditTable Data.. 113

Application-defined Data Structures... 113
Specifying Undefined Values ... 113

EditTable Actions.. 114
EditTable Translations .. 117

Actions With No Default Translations.. 118
Changing the Default Translation Table ... 118
Specifying Translations for Annotation Actions .. 118
Text Actions .. 118

EditTable Callbacks .. 119
Cell Attributes Callback.. 134
Check Edit Mode Callback ... 134
Column Callback... 134
Double-click Callback... 135
Drag Callback ... 135
Edit Annotation Callback.. 135
Format Cell Callback .. 135
Format Column Annotation Callback ... 136
Format Row Annotation Callback .. 136
Row Callback.. 136
Select Cell Callback .. 136
Traverse Cell Callback.. 137
Validate Value Callback ... 137

EditTable Functions .. 137

Chapter 5—Scroll Widget Class
Overview ... 189
Scroll Children .. 190
Creating a Scroll Widget ... 190

Specifying Annotation and Annotation Placement ... 190
Specifying Scrollbar Display Policy and Placement... 190
Specifying a 3-D look for the Viewing Areas... 190
Synchronized Scrolling ... 191
Connecting Scrollbars to Scroll Widgets .. 191
Appearance.. 192
vi EditTable Programming Guide

Scroll Layout ... 193
Inherited Behavior and Resources... 194
Scroll Components .. 199
Scroll Functions... 200

Chapter 6—Examples
Overview ... 203
How To Make and Run Example Programs.. 204

Makefile... 204
Running an Example Program .. 204

Example 1: Creating a Simple Table... 205
Example 2: Scrollable Table with User Data .. 208
Example 3: Change Fonts and Add Totals .. 211

Global Definitions ... 212
Additional Resources .. 212
Additional Callbacks ... 213
Set Table Font ... 213
Number of Employees Callback.. 214
Summation Callback ... 215

Example 4: Widget In A Cell .. 216
Inserting a PushButton Widget.. 217
Inserting a ToggleButton Widget .. 218
Updating Resources... 219
Updating the Edit Table .. 220
EditTable Programming Guide vii

viii EditTable Programming Guide

preface.fm5 Page ix Thursday, January 22, 2009 12:24 PM
How To Use This Manual

Overview
The INT EditTable Widget Library is designed for use by software developers and
C or C++ programmers who want a fast, easy way to display and manipulate data in
an X Window/Motif environment. Before you get started, read the following
sections to acquaint yourself with manual organization and typographical
conventions.This programming guide explains how to create application programs
using the Xint EditTable Widget Library.

This chapter includes the following sections:

• Organization of This Manual on page x

• Notation Conventions on page x
EditTable Programming Guide ix

HOW TO USE THIS MANUAL
Organization of This Manual

preface.fm5 Page x Thursday, January 22, 2009 12:24 PM
Organization of This Manual
To get the most from this manual, we suggest you take the following steps:

• Use Chapter 1—Introduction to get acquainted with most major features of the
INT Edittable and related widgets.

• Use Chapter 2—CompBase Widget Metaclass, Chapter 3—EditObject Widget
Class, Chapter 4—EditTable Widget, and Chapter 5—Scroll Widget Class to
learn about specific callbacks, resources, actions, and functions.

Note: Use the index to locate specific callback instructions.

• Use Chapter 6—Examples to learn how INT widget components are used in
real-life programming situations to produce the desired effects.

You can use these chapters in any order, however, we recommend that you read them
in sequence.

 Chapter 6—Examples contains examples of programs that use the Xint EditTable
Widget Library. We suggest that you work through the examples using the supplied
example source code programs.

Notation Conventions
There are several conventions used in this programming guide to represent keyboard
commands, menu commands, and widget-feature identifiers. You must become
familiar with them in order to use this guide correctly.

This guide uses the following text styles and symbols:

• Boldface indicates that the name in boldface is a reserved word such as the
name of a resource, action or function associated with a widget.

• Italics indicates that this is the name of a widget class, the name of a
pushbutton, the name of an argument in an argument list, or the name of a
member in a C structure.

• Monospaced indicates that this is the text of a C program.
x EditTable Programming Guide

c2-intro.fm5 Page 1 Thursday, January 22, 2009 12:26 PM
Introduction 1
Overview

This chapter provides a general description of the INT EditTable Widget Library’s
architecture, contents and functionality, and includes the following sections:

• EditTable Widget on page 2

• Data Handling on page 3

• Basic Features on page 5

• Advanced Features on page 7

• Widget in a Cell on page 18

• Cell Spanning on page 20

• Typical Applications on page 22

• Integration with Other INT Widgets on page 24

• Instance Network on page 28

• Creating and Freeing INT Widgets on page 29

• Obtaining and Setting Resource Values on page 30
EditTable Programming Guide 1

INTRODUCTION
EditTable Widget1

c2-intro.fm5 Page 2 Thursday, January 22, 2009 12:26 PM
EditTable Widget
The EditTable widget is a set of programming tools that help you create advanced
spreadsheet and table-oriented data displays in the X Window/Motif environment.
EditTable facilitates control of all aspects of a table display, from simple
arrangement of titles, annotations, margins, color, and shading, to complex aspects
of data formatting, validation, and hardcopy output.

Widget Components
EditTable is one of several widgets derived from the Motif XmManager widget
class. Used together, these widgets provide not only advanced table features, but the
ability to display and edit graphic objects, produce charts, and generate hardcopy in
many popular formats. The EditTable widget has the following standard
components:

• Xint resources let you control the widget’s “look and feel.”

• Xint convenience functions allow applications to directly populate, query, and
control the data and format of the table.

• Xint action routines help control cursor and pointer movements and the
selection, deletion, or saving of objects.

• Xint callbacks provide ways to modify data tables in response to user actions.

EditTable provides over 100 resources (in addition to Motif base class resources),
over 50 action routines, over 100 functions, and many callbacks. All are designed to
provide familiar tools you will recognize, without the time-consuming complexity
of X/Motif programming.

EditTable Features
The EditTable widget is designed to provide the following specific features and
benefits:

• Rapid development of portable applications.

• Full graphics editing capability in addition to graphics display capability.

• High-level building blocks reusable in a wide variety of applications.

• Built-in hardcopy support so an application programmer doesn’t have to worry
about hardcopy implementation.

• Object oriented programming design.

• Insulate application programmers from the complexity of Xlib.
2 EditTable Programming Guide

INTRODUCTION
Data Handling 1

c2-intro.fm5 Page 3 Thursday, January 22, 2009 12:26 PM
• Decrease application design errors and programming errors.

• Decrease the cost of application enhancements and debugging.

• Allow inexperienced X/Motif programmers to successfully develop maintainable
applications that meet user requirements.

• Combine broad widget functionality with ease of use.

• Provide all resources and functions needed to control any aspect of a object’s
behavior and appearance.

• Provide all resources, actions and dialog boxes needed by end users to control
object behavior and appearance, thereby freeing the application programmer to
spend time developing other aspects of the application.

Data Handling
The following sections describe the types of data handled by EditTable, and how data
is formatted by EditTable.

Data Types
EditTable can handle a variety of data sources and data types. Each column has an
associated data type set with resource XmNcolumnDataTypeData or function
XintEditTableDefineColumnFormat. If no column type has been specified, the default
applies. This is set with resource XmNdefaultColumnDataType.

Table data
values

Data values in a table can be any of the following types:

• Integers (XintTYPE_INTEGER)

• Short integers (XintTYPE_SHORT)

• Long integers (XintTYPE_LONG)

• Floating point numbers (XintTYPE_FLOAT)

• Double-precision floating point numbers (XintTYPE_DOUBLE)

• Character strings (XintTYPE_STRING)

Note: For these data types, the data format must be uniform within a column.
However, EditTable also supports the pointer data type which lets you use composite
data in applications.
EditTable Programming Guide 3

INTRODUCTION
Data Handling1

c2-intro.fm5 Page 4 Thursday, January 22, 2009 12:26 PM
Data Formatting
The formatting of the cell data into a string is done automatically based on the data
type specified for each column. A C type format specifier is used to control the
formatting (see resources XmNdefaultColumnDataFormat on page 96 and
XmNcolumnDataFormatData on page 94).

The application should make sure that the data format specifier and data type are
compatible for each column. The application can also use the callback
XmNformatCellCallback to specify non standard formats (for example to represent
negative numbers inside brackets).

EditTable also supports the storage of pointer (XintTYPE_POINTER) data where
the formatting of the cell is done via the callback XmNformatCellCallback only.

The table can be populated on a per cell basis, using function XintEditTableFillCell
or on a column basis using function XintEditTableFillColumn.

Flexible Data Handling
By default, EditTable makes a copy of the data. This behavior can be disabled by
setting the resource XmNuseOriginalData to True at widget creation time. For
example, you could have a table directly access the same memory area as a displayed
plot, so that any changes to the plot would immediately update the table and vice
versa.

Dataless Tables
EditTable table supports a column type XintTYPE_NONE where the table will
request its data as a string using the callback XmNformatCellCallback. In this last
case, changes in the data should be notified to the EditTable using the function
XintEditTableUpdateDataDisplay.
4 EditTable Programming Guide

INTRODUCTION
Basic Features 1

c2-intro.fm5 Page 5 Thursday, January 22, 2009 12:26 PM
Basic Features
This section discusses the basic features provided by EditTable and its related widgets,
as shown in Figure 1. Refer to Chapter 4—EditTable Widget for more detailed
information.

Figure 1. Understanding the Basic Features

Margins and Table Dimensions
You can control all aspects of table size, margins, and dimensions. EditTable allows
you to perform the following actions, dynamically:

• Add columns or rows.

• Resize column width or row height.

• Set precise margins for titles, annotation areas, or cells.

Margins can be sized automatically or based on resources provided by either the
XmManager widget or the Scroll widget (XintScroll). Total table size is limited only
by the size of available memory.

Title position, alignment,

Table size

Cell font,

Grid separator
width, style,

Annotation

font, margins

margins, font,
justification,
shadow

alignment,
margins,
edit control

shadow
EditTable Programming Guide 5

INTRODUCTION
Basic Features1

c2-intro.fm5 Page 6 Thursday, January 22, 2009 12:26 PM
Text Alignment, Size, and Font Type
EditTable gives you complete control over the positioning, size, color and font of all
text components, including:

• Table title

• Cells

• Row/column annotation

For instance, the title can be at any location on the table (top/bottom/left/right).
Annotations can be on either side or both sides of the table, with any desired
justification inside the annotation area.

Text Editing
The EditTable widget supports a large number of editing operations that can either
be controlled by the application using INT functions or performed by the end user
via action routines. Users of applications built on EditTable can edit cells or
row/column annotations directly in a full text editing mode (i.e., click, shade,
backspace, retype). The widget supports the following features:

• Insert/delete rows or columns

• Undelete previously deleted rows or columns

• Reverse row/column sequence

• Cut, paste, or copy rows, columns, or ranges of cells

• Change all selected cells to a specified value

Any deleted or copied rows or columns are stored on a clipboard that can
simultaneously hold both columns and rows. When another copy or delete operation
occurs, the data copied or deleted replaces the same type of data (row or column)
currently on the clipboard. Data on the clipboard can be pasted into the table using
convenience functions and action routines.
6 EditTable Programming Guide

INTRODUCTION
Advanced Features 1

c2-intro.fm5 Page 7 Thursday, January 22, 2009 12:26 PM
Column/Row Formatting
A column can be modified by changing any of the following:

• Format of data in the column

• Width of the column

• Number of rows

• Text font

• Foreground/background colors

EditTable allows format changes by the application or the user. For example, the user
may want prices to be displayed using dollar signs, commas, and decimals, even
though the price data is stored without these elements.

Cursor Movement
Users can traverse a table using the keyboard (Tab, cursor keys, etc.) or by using the
mouse to click directly on a cell. The application can control keyboard traversal
through a callback so that the cursor skips over certain parts of the table that are
irrelevant to the current operation. You can also build dialogs that let end users “go to”
a specific row/column in the table or to a specified percent of the width/height of the
table.

Advanced Features
This following sections discuss several advanced features provided by the EditTable
and related widgets.

User-defined or Automatic Annotation
Row/column annotations can be user-defined or automatically labelled with numeric
or alphabetic sequences. Columns can be annotated in spreadsheet fashion with
character strings that are automatically generated in alphabetical order (A, B, C,...,
AA, AB, etc.). Rows can be annotated automatically with sequential integers or any of
the other supported data types (float, character, and so forth).
EditTable Programming Guide 7

INTRODUCTION
Advanced Features1

c2-intro.fm5 Page 8 Thursday, January 22, 2009 12:26 PM
The application can apply the annotation value for a column or row as it is created
or after it is created. Figure 2 shows an example of a table with auto-annotation and
an example of a table with user-defined annotation:

Figure 2. Table Annotation Options

Inter-cell Grid Separators
For more visually sophisticated displays, EditTable allows you to add grid line
separators (Figure 3) with specifiable features such as:
• Line thickness (in pixels)
• Line color and style (solid, dashed, etc.)
• 3D effect (shadow in/shadow out)
• Selectable orientation (row, column, or both)

Figure 3. Cells With/Without Grid Line Separators

Micro-formatting
EditTable supports color or text font changes at the row level, column level, or
cell-by-cell, as shown in Figure 4. This provides a way to highlight important data
such as totals or constraints so that it stands out in the table. Individual cells can
contain multiple lines of data, if desired.

Table With Auto Annotation Table With User-defined Annotation
8 EditTable Programming Guide

INTRODUCTION
Row/Column Freezing 1

c2-intro.fm5 Page 9 Thursday, January 22, 2009 12:26 PM
Figure 4. Varied Text Fonts and Multi-line Cells

Row/Column Freezing
EditTable allows freezing of any sequential or non-sequential group of rows and/or
columns, as shown in Figure 5. Freezing causes the rows or columns to remain fixed
in the same position so that they do not scroll with the rest of the table. Frozen rows
can be placed at the top or bottom of the table; frozen columns at the left or right.
Cells in a frozen column can still be selected and edited, if desired. Frozen rows or
columns can be unfrozen when desired.

Figure 5. Example of Frozen Columns and/or Rows

Frozen Columns

Frozen Rows
EditTable Programming Guide 9

INTRODUCTION
Advanced Features1

c2-intro.fm5 Page 10 Thursday, January 22, 2009 12:26 PM
Row/Column Visibility and Partial Displays
To provide additional control over data presentation, EditTable allows the visibility
of any column or row to be selectively turned on or off (Figure 6). Columns or rows
that are turned off disappear completely from the display, but remain active in the
background until turned on again. EditTable also allows you to decide whether or not
to display data in columns that are only partially visible in the viewing area. This
feature is valuable for financial displays or other applications where a partial display
of prices or other data could lead to misquotes or other potential misinterpretation.

Figure 6. Columns With/Without Displayed Data

Free-style Selection
EditTable allows users to select any combination of columns, rows, or individual
cells, whether or not the selected components are adjacent (Figure 7). You can
extend selections indefinitely to add rows, columns, or cells to the initially selected
area. Selected rows, columns, or cells can be set off by a special background color
and/or a highlighted border of a specified thickness and color, and cut, copied, or
pasted as a group.

Figure 7. Row, Column, and Random Selections

Partial Display Blocked Partial Display Allowed
10 EditTable Programming Guide

INTRODUCTION
Horizontal Columns 1

c2-intro.fm5 Page 11 Thursday, January 22, 2009 12:26 PM
Horizontal Columns
The columns in a table can be oriented vertically or horizontally. Vertical is the
standard orientation, but in some applications a horizontal orientation may be
useful. When the columns are oriented horizontally, the cells in a column are drawn
from left to right and the column annotation appears on the left or the right of the
column. All column and row operations work the same, regardless of column
orientation.

Icon Selection and Display
EditTable lets you superimpose an icon or pixmap as the background for any range
of cells. This can include company logos or special pictorial elements that can be
more easily interpreted than raw data. An XWD image, X bitmap, or other
bitmapped symbol can be converted to a pixmap and inserted into a cell. The
application can dynamically control the use of bitmapped symbols as background
for table cells, as shown in Figure 8:

.

Figure 8. Example of Pixmap Background

Logo pixmap used
as cell background
EditTable Programming Guide 11

INTRODUCTION
Advanced Features1

c2-intro.fm5 Page 12 Thursday, January 22, 2009 12:26 PM
Cell Validation and Locking
EditTable includes advanced input validation features. For example, you could trap
input that does not match the default data type and display a warning dialog for users.
Additionally, you can check that data is within specified ranges. Validation can occur
immediately on a cell-by-cell basis or for the entire table. The application can allow
the change, prohibit the change, or substitute its own value.

EditTable also supports read-only protection of cells, so that the user can be locked
out of certain rows, columns, or individual cells. Since the widget notifies the
application of cursor movement, it can flag any situation where the user tries to edit
read-only cells.

Cell Attributes
Attributes such as cell foreground and background, pixmap and font can be set on a
cell basis. A set of functions, such as XintEditTableSetCellForeground or
XintEditTableSetCellBackground is provided to set those attributes for a cell or a
block of cells. This information is stored inside the table. For large tables or when
memory usage is a concern, the callback XmNcellAttributesCallback can be used to
provide cell attributes directly at cell repaint time. For example this feature can be
used to set the cell color when it is a function of the data, row or column number.

Note: To make a cell flash for a specified period of time, use function
XintEditTableCellFlash.

The function XintEditTableSetCellDisplayAttributes can be used to update the
foreground, background and data content of a range of cells in one atomic operation.

Displaying Composite Data (Pointer Data Type)
EditTable provides a pointer data type that lets you set up specific columns in a table
so they receive application-defined data (structures, arrays, or other tables). This
allows you to display composite items such as date and time or a value calculated as
the result of operations on another table. For example, the date may be derived from
an array {1993, Dec, 15} but displayed in an alternate format (12-15-93). The
application uses a callback to handle the formatting process.

User-defined Data Formatting
EditTable provides another callback feature that lets users select their own custom
formatting for data columns. For example, the application might store the data
12 EditTable Programming Guide

INTRODUCTION
Cell Spanning 1

c2-intro.fm5 Page 13 Thursday, January 22, 2009 12:26 PM
123456.78 as data type “double,” but display it with dollar signs and commas so that
the data reads: $123,456.78, as shown in Figure 9:

Figure 9. Pointer Type Data in User-formatted Display

Cell Spanning
EditTable provides a method to allow cells to span more than one row/column
location in both the row and column directions. This span can be applied to all of the
cells in the table, or a subset of the table locations.
EditTable Programming Guide 13

INTRODUCTION
Advanced Features1

c2-intro.fm5 Page 14 Thursday, January 22, 2009 12:26 PM
Importing Data from ASCII Files
EditTable provides a mechanism for populating tables with data contained in ASCII
files. The widget provides both a resource and a function for reading delimited
ASCII files into a table. Both tab-separated and comma-separated (CSV) files can be
read directly into the table. Each line in the ASCII file corresponds to a row in the
table. The cell contents of a row correspond to the file entries between delimiters.
Incoming data for a cell is converted to the specified column data type as the file is
being read; if this conversion fails, the cell is left unchanged. Controls are provided
for specifying alternative field delimiters. It is also possible to cause EditTable to use
the first column of the file as the row annotation; similarly the first row of the file
can be used as the column annotation.

Interactive Move, Copy, and Resize
EditTable provides a set of actions for interactively moving, copying and resizing
rows, columns and cells. The move and copy actions let users reposition rows and
columns within the table by selecting them and dragging them to the desired location
using a mouse. Resizing is similar in that the user drags the row, column, or cell
boundary until it becomes the desired size. EditTable supplies functions for inquiring
the cell height and width after interactive resizing.

You can specify the cursor type displayed during these operation. Additionally, you
can show either the contents of the cells being moved or just an outline of the cells.
In either case, you can specify the line style and the color of the outline of the cells
which the user is dragging. The application can also specify a callback to be invoked
after the cells have been resized or dragged to their new location.
14 EditTable Programming Guide

INTRODUCTION
Multiple Output Formats 1

c2-intro.fm5 Page 15 Thursday, January 22, 2009 12:26 PM
Multiple Output Formats
EditTable provides several hardcopy and exchange formats for output You can
output an entire table or a range of cells in these formats:

• ASCII
This is a plain text format often used to transfer data between applications.
Columns may be separated by spaces or by a delimiter character such as a
comma or tab.

• SYLK
This is a spreadsheet exchange format that offers a variety of font options, for
specially designed tables that need to match a specific presentation environ-
ment.

• PostScript
EditTable provides color or monochrome PostScript output of the entire table
or any sub-table. You can specify an output scale that controls the size of final
output, plus specify resolution (pixels/in), page width (in), and page height
(in).

• CGM
EditTable provides binary CGM output, a common scalable format used in
presentations and desktop publishing.

Motif Drag and Drop
EditTable supports full Motif drag and drop functionality (Note: drag and drop is not
supported under X11R4/Motif1.1). One can drag and drop cells from a table into
another table, from a text widget into a table, etc. If you are using ChartObject, it is
also possible to drag and drop data from a table to a chart and from a chart to a table.

EditObject action MotifStartDrag controls the drag operation, and connects with the
following translation:

<Btn2Down>: MotifStartDrag()

Note: No specific action is defined for dropping objects. The drop operation is
activated automatically on a button release.
EditTable Programming Guide 15

INTRODUCTION
Advanced Features1

c2-intro.fm5 Page 16 Thursday, January 22, 2009 12:26 PM
Drag and Drop operations can be disabled by setting EditObject resources
XmNallowDrag and XmNallowDrop to False. Also, callback
XmNdragDropCallback is invoked on both drag and drop operations and can be used
to selectively enable or disable either drag or drop operations. This callback can also
be used to modify the type of drag and drop operation (copy/move/link) and modify
the index or count of the cells being dragged.

Default behavior
for drag and
drop

The following table summarizes the default behavior for drag and drop. if there is a
key sequence in the translation, it is important that the keys remain pressed until the
drag and drop operation has been completed and the button has been released.

 Key
Sequence

Drag
Source Drop Site Description

<Btn2Down> EditTable EditTable Copies the selected cells from the source
table to the destination table.

<Btn2Down> EditTable Chart object The data contained in the selected cells
is copied into the chart object (move
option is disabled for the EditTable
widget).

Ctrl
<Btn2Down>

EditTable Chart object The data contained in the selected cells
is copied into the chart object.

Ctrl Shift
<Btn2Down>

EditTable Chart object The data contained in the selected cells
is copied into the chart object and a
link is made between the table and the
chart.

<Btn2Down> Chart object EditTable The data contained in the chart is
moved to the table at the location
specified by the pointer.

Ctrl
<Btn2Down>

Chart object EditTable The data contained in the chart is cop-
ied to the table at the location speci-
fied by the pointer.

Ctrl Shift
<Btn2Down>

Chart object EditTable The data contained in the chart is cop-
ied to the table at the location speci-
fied by the pointer. A link is
established between the chart and the
table.

<Btn2Down> Motif Text EditTable Content of the Text widget is copied
into the specified table cell.
16 EditTable Programming Guide

INTRODUCTION
DataObject Connection 1

c2-intro.fm5 Page 17 Thursday, January 22, 2009 12:26 PM
DataObject Connection
The ChartObject library provides a library of data objects called DataObject library.
This library defines the model component of the ChartObject Model View
Controller architecture. When used in conjunction with ChartObject, EditTable can
become another view of the data by associating a Data object to the EditTable
widget using function XintEditTableAssociateData. Figure 10 illustrates an
example where a chart object and an EditTable widget are both associated with the
same data object:

Figure 10. Multiple Views of a Data Object
EditTable Programming Guide 17

INTRODUCTION
Widget in a Cell1

c2-intro.fm5 Page 18 Thursday, January 22, 2009 12:26 PM
Widget in a Cell
The EditTable widget offers a simple yet powerful mechanism to insert a widget
inside a cell or to use a single widget across an entire range of cells. Any valid Motif
widget, with the exception of composite widgets such as RowColumn or Form
widgets, can be inserted, so long as the cell or cells are not frozen. Gadgets are not
supported. To insert a widget into one or more cells (Figure 11), the application
simply creates the widget with EditTable as the parent and uses constraint resource
XmNcellWidgetRange to specify the range of cells that are to contain this widget.
Figure 11 illustrates a push button widget and a toggle button widget, each
propagated to an entire column in an electronic checkbook:

Figure 11. Example of a Widget In a Cell Application

Cell Resources
It is important for the contents of a widget to reflect the visual characteristics that are
to be displayed in the cell before the cell that contains the widget is drawn. EditTable
will automatically set the cell resources listed below on the widget if the constraint
resource XmNcellWidgetSetResources is set to True. This occurs before the
18 EditTable Programming Guide

INTRODUCTION
Cell Resources 1

c2-intro.fm5 Page 19 Thursday, January 22, 2009 12:26 PM
XmNcellWidgetDisplayCallback callback is called.

The values of these resources are available in the callback structure
XintEditTableCellWidgetCallbackStruct. If XmNcellWidgetSetResources is
False, or it is necessary to change one or more values, this can be done in the
callback. The callback also permits other widget resources, which are not in the list
above, to be set.

If XmNcellWidgetSetResources is False and XmNcellWidgetDisplayCallback is
not called, the visual characteristics of the cells will be undefined!

In most applications it will be sufficient to set XmNcellWidgetSetResources to
True and omit the XmNcellWidgetDisplayCallback. The ToggleButton widget is
an example of an instance where XmNcellWidgetDisplayCallback is necessary in
order to get information about the cell state to use in setting the XmNset resource.

Due to the power and speed of the Widget in a Cell mechanism, The XmString data
type (to enable internationalization of the interface application) is easily supported.
This is accomplished by specifying a Motif Label widget across a range of cells.

Constraint resource XmNcellWidgetOverrideTranslations allows the
programmer to determine the focus for navigation events when the widget is
mapped to the table. If set to True, arrows and tab keys take you back to the table
process rather than remaining in the mapped widget. The
XintEditTableGetCellWidget convenience function may be used to get the widget
associated with a particular cell location.

Resource Name Automatic Setting

XmNlabelString Current cell content, as a string.

XmNfontList Current cell font.

XmNbackground Current cell background.

XmNforeground Current cell foreground.

XmNalignment Current cell alignment.

XmNsensitive Current cell sensitivity.
EditTable Programming Guide 19

INTRODUCTION
Widget in a Cell1

c2-intro.fm5 Page 20 Thursday, January 22, 2009 12:26 PM
Because the Widget in a Cell mechanism associates a range of cells with a single
widget, a callback that is attached to the widget will be called as long as the current
location is within that range. It is usually important to know the specific table
location associated with any user event. For this purpose, the
XintEditTableGetCellPointerPosition function should be used to return the table
location of the cell pointer.

Example 4: Widget In A Cell on page 216 describes the coding that is required to
create the checkbook example shown above. This example illustrates widget
resources that are set automatically and widget resources that are set by the
programmer.

Cell Spanning
The cell spanning feature of EditTable enables cells to span across several columns
and/or rows (if rows/columns are not frozen). This span can be applied to all of the
cells in the table, or a subset of the table locations. Cell spanning is enabled by the
resource XmNspanMode, which also determines the manner in which the cells will
be drawn. Figure 12 shows a display produced by ETSpan.c in the
examples/EditTable directory:

Figure 12. Cell and Annotation Spanning
20 EditTable Programming Guide

INTRODUCTION
Cell Spanning 1

c2-intro.fm5 Page 21 Thursday, January 22, 2009 12:26 PM
The normal practice is to make sure that the adjacent cells, which are covered by the
span, are empty. That is, cells for which no data is specified or where the value is
one of the undefined values listed in the section Specifying Undefined Values on
page 113. This is because any data which exists in a cell before spanning is specified
can remain visible, even though that location becomes part of a spanned cell.

Also, if the XmNspanCellPointer resource is set to True, the cell pointer treats the
spanned cell as a single location, and the cells that are covered by the span are
inaccessible. However, if it is set to False, then the cells covered by a span can still
be individually accessed and edited. Only empty row/column locations covered by
a spanned cell will not interfere with the visibility of that cell.

The function XintEditTableCellSpanSetRange is used to set the cell span, as defined
by the XintCellSpanFactor structure, over a given range of row/column locations.
There is a corresponding function, XintEditTableCellSpanGetRange, that will
retrieve the cell span factor for a particular cell.

Spanning can also occur in the horizontal and vertical annotation areas. This is done
by specifying the starting row of the span range as zero (0) for the horizontal
annotation and the starting column of the span range as zero (0) for the vertical
annotation.
EditTable Programming Guide 21

INTRODUCTION
Typical Applications1

c2-intro.fm5 Page 22 Thursday, January 22, 2009 12:26 PM
Typical Applications
A broad and flexible array of features makes EditTable particularly suitable for use
in applications such as the ones discussed in the following sections Figure 13 shows
an example of EditTable applications:

Figure 13. Example of EditTable Applications
22 EditTable Programming Guide

INTRODUCTION
Spreadsheets 1

c2-intro.fm5 Page 23 Thursday, January 22, 2009 12:26 PM
Spreadsheets
EditTable can be used to build spreadsheets that are more specialized and powerful
that those provided by general-purpose spreadsheet programs. EditTable lets you
use the full capabilities of C or C++, including any C-compatible data types, and
have complete control of cell editing, display, and data validation. The widget’s
efficient data handling capabilities make it uniquely qualified to handle the display
and analysis of large data sets such as those found in financial and scientific
applications.

Real-time Monitoring and Analysis
You can use the EditTable widget for monitoring and analysis of real-time data,
including:
• Financial trading systems
• Remote telemetry
• Telecommunication

Applications like these use EditTable’s flexible color controls to indicate cells with
out-of-range or alarm conditions. EditTable provides the features you need to build
multiple widgets that share data — for example, a spreadsheet and plot that
automatically update each other, as shown in Figure 14:

Figure 14. Example of Real-time Data Monitoring
EditTable Programming Guide 23

INTRODUCTION
Integration with Other INT Widgets1

c2-intro.fm5 Page 24 Thursday, January 22, 2009 12:26 PM
Data Entry and Validation
EditTable is especially suited for applications that require intensive data entry. The
application can specify which cells are editable or protected. Users can edit cells
directly using backspace/retype or cut/copy/paste features. All data can be checked for
accuracy or violation of certain minimum/maximum ranges immediately as the user
finishes an entry or later when the entire table is saved. When used with the INT scroll
widget (XintScroll) multiple tables can be scrolled simultaneously for easier viewing
and editing.

Database Display and Browsing
EditTable can be used as browser for relational or flat-file databases. This capability is
especially useful for viewing the actual data structure, since EditTable lets you view
individual data fields in their native formats (hex, string, float, etc.) or in various
converted formats controlled by the application. Selective freezing and scrolling of
different rows or columns makes it easy to compare data in any part of the database to
certain reference fields.

Integration with Other INT Widgets
EditTable is a subclass of other widgets, and automatically inherits the features of
any other widgets that belong to the same general class. Figure 15 shows the
hierarchy of widgets in the same class as EditTable:

Figure 15. Overall Widget Hierarchy

EditTable offers integration with the other widgets in this metaclass, as summarized
in the following sections.

XmManager

XintCompBase

XintEditObject

XintEditTable

XintScroll
24 EditTable Programming Guide

INTRODUCTION
Hardcopy Output and Coordinate Mapping (XintCompBase) 1

c2-intro.fm5 Page 25 Thursday, January 22, 2009 12:26 PM
Hardcopy Output and Coordinate Mapping (XintCompBase)
The CompBase widget gives all other widgets in the metaclass the ability to produce
hardcopy output and perform coordinate system mapping between the widget’s
coordinate system and the application’s coordinate system.

Enhanced Scrolling (XintScroll)
The Scroll widget is a container widget that scrolls an EditTable widget in such a
way that its annotation remains visible during scrolling. A Scroll widget combines:

• One or two ScrollBar widgets.

• A viewport onto a portion of the scrolled child.

• Drawing area widgets for displaying the scrolled child widget’s title,
horizontal annotation and vertical annotation.

The application has control over which components of the Scroll widget are
displayed and where they are located. Also, several Scroll widgets can share one or
both scrollbars to allow for synchronous scrolling of multiple tables.

Graphic Objects (XintGraphic)
The XintGraphic object class is the base class that defines the basic resources and
methods for displaying and editing graphic objects. Graphic objects can only be
displayed in a widget that is a subclass of the XintEditObject widget class. At the
lowest level, the graphic object subclasses include:

• XintLine for drawing straight lines, with or without arrow heads.

• XintRectangle for drawing rectangular objects, which can contain other objects
such as text objects and circles.

• XintTextObj for inserting a character string that can span multiple lines within
a rectangular area.

• XintOval object for drawing circles or ellipses, with coordinates specified in
relation to XintRectangle.

• XintPolyline object for drawing polylines or polygons.
EditTable Programming Guide 25

INTRODUCTION
Integration with Other INT Widgets1

c2-intro.fm5 Page 26 Thursday, January 22, 2009 12:26 PM
The XintGraphic class defines all the basic methods that apply to objects, including
methods to display, select, move and resize an object. Additional methods include
group, ungroup, cut, paste, and file import/export.

Graphic resources define object properties such as fill pattern, color, line thickness
and line style. Figure 16 shows the hierarchy for graphic objects:

Figure 16. Hierarchy for Graphic Objects

Graphic Object Editing, Storage, and Retrieval (XintEditObject)
An optional INT product called the Object Editor Library (XintEditObject) lets users
draw graphic objects such as text, lines, circles, arcs, or arrows and superimpose
them directly on a table.

For example, a user may want to draw attention to a special group of data in a report
or presentation, as shown in Figure 17:

XintTextObjXintOval

(Xt) Object

XintPolyline

XintGraphic

XintLine XintRectangle XintMultiPoint
26 EditTable Programming Guide

INTRODUCTION
Graphic Object Editing, Storage, and Retrieval (XintEditObject) 1

c2-intro.fm5 Page 27 Thursday, January 22, 2009 12:26 PM
Figure 17. Example of Graphics Superimposed on Table

The EditObject widget provides support for displaying, editing, and
storing/retrieving graphic objects through a comprehensive set of actions, callbacks
and convenience functions.

Editing capabilities include the ability to select one or more objects and to move,
size or shape objects. A set of convenience functions lets you save and restore
objects to or from an ASCII file. An internal clipboard mechanism provides cut and
paste functionality inside an application or between two different applications that
use EditObject widgets (or widgets from a class that has the XintEditObject as an
ancestor).

Graphics can be saved to a separate file for later retrieval and use in the table. When
a component is removed from a table, any graphic object tied to that component is
removed also. However, the graphic object still exists and will reappear when the
removed element is restored.
EditTable Programming Guide 27

INTRODUCTION
Instance Network1

c2-intro.fm5 Page 28 Thursday, January 22, 2009 12:26 PM
ChartObject Library
ChartObject is a library of Graphic objects based on the architecture described above.
This package allows the application and the end-user to produce all kinds of 2D and
3D charts. A close integration exists between the EditTable and the Chart object
library, and an EditTable widget and a ChartObject can be dynamically linked. It is also
possible to drag and drop cells from an EditTable widget into a ChartObject. Refer to
the ChartObject Programming Guide for more information on ChartObject and
Graphic libraries.

Instance Network
The widgets and objects in the EditTable Widget Library can only be created as
children of certain specific classes of widgets. Conversely, a widget accepts only
certain types of widgets and/or objects as children. The following sections describe
parent/child restrictions for widgets and objects.

CompBase Class
You cannot create an instance of this widget class because it serves only as a base
(metaclass) for the composite widgets.

EditObject Widget
You cannot create an instance of this widget class because it serves only as a base
(metaclass) for the composite widgets.

EditTable Widget
An EditTable widget can be a child of any widget that accepts an XmManager
widget as a child (such as XmForm or TopLevelShell). Often, an EditTable widget
will be the child of an instance of the XintScroll widget class. Since EditTable is a
subclass of XintEditObject, an EditTable widget can have children that are Graphic
objects.
28 EditTable Programming Guide

INTRODUCTION
Creating and Freeing INT Widgets 1

c2-intro.fm5 Page 29 Thursday, January 22, 2009 12:26 PM
Scroll Widget
An XintScroll instance can be a child of any widget that accepts XmManager as a child
(such as XmForm or TopLevelShell). XintScroll can control the scrolling of only one
EditTable widget.

Graphic Objects
Objects are always managed automatically by their widget parent. Because of this
special relationship between objects and their parents, there are stringent restrictions
on who can be a parent of a specific type of object. Note also that Graphic objects
cannot have children. Graphic objects must be children of an EditTable widget.

Creating and Freeing INT Widgets

Creating INT
widgets

The INT widgets are created in exactly the same manner as Xm widgets are created.
There are widget creation convenience functions that you can use to create
(unmanaged) INT widgets. These widget creation functions are described in the INT
widget class reference sections. You can also use the Xt widget creation functions:
• XtCreateManagedWidget
• XtCreateWidget
• XtVaCreateManagedWidget
• XtVaCreateWidget

As always, after you create an unmanaged widget, you must manage the widget before
it is visible on the screen.

Freeing INT
widgets

INT widgets are freed in exactly the same way as Xm widgets are freed. You can use
the Xt function, XtDestroyWidget, to free the memory and data structures associated
with a INT widget or object. When a parent widget is destroyed with this function, all
of its children will also be destroyed.

Freeing data
structures

Some INT widgets (for example, EditTable) use external data structures which you
may need to free using the Xt function, XtFree. Also, some INT functions (for
example, XintEditTableGetColumnData) return pointers to a copy of the data
requested. You may also need to free the storage allocated for the copy when you have
finished using it. Widget and object reference sections indicate when it’s your
responsibility to free INT widget or object related data structures.
EditTable Programming Guide 29

INTRODUCTION
Obtaining and Setting Resource Values1

c2-intro.fm5 Page 30 Thursday, January 22, 2009 12:26 PM
Obtaining and Setting Resource Values

Obtaining
resource values

An application gets the current value of a resource of an INT widget in exactly the
same manner as it gets resources of Xm widgets. You can use the Xt resource value
access functions:

• XtGetValues

• XtVaGetValues.

Setting resource
values

An application sets the value of a resource of an INT widget in exactly the same
manner as it sets the resources of Xm widgets at widget creation time. After widget
creation time you can use the following Xt resource value access functions to set
resources:

• XtSetValues

• XtVaSetValues
30 EditTable Programming Guide

c2-compb.fm5 Page 31 Friday, January 30, 2009 9:44 AM
CompBase Widget
Metaclass 2

Overview
CompBase is a base widget class that handles hardcopy output for its subclasses,
including EditObject and EditTable. The CompBase widget class defines a set of
functions for producing disk files containing CGM or PostScript representations of
the graphical display of a widget and of its content. CompBase also handles the
hardcopy output of the composition of multiple widgets. A composite image must
be of multiple EditObject based widgets contained within a Composite widget such
as a Motif Form or RowColumn widget.

In addition to hardcopy, CompBase provides a set of convenience functions to map
user coordinates to and from device coordinates. The CompBase widget class is a
metaclass and cannot be instantiated directly.

This chapter includes the following sections:

• Inherited Behavior and Resources on page 32

• CompBase Functions on page 33
EditTable Programming Guide 31

COMPBASE WIDGET METACLASS
Inherited Behavior and Resources2

c2-compb.fm5 Page 32 Friday, January 30, 2009 9:44 AM
Inherited Behavior and Resources
The CompBase widget inherits behavior and resources from the Core, Composite
and Manager classes.
• Class pointer is xintCompBaseWidgetClass
• Class name is XintCompBase
• Header file is included as <Xint/CompBase.h>

Resources The following resources are defined by the CompBase class:

XmNfontPath
Some subclasses of CompBase and some object classes such as Text or Symbol may
require the use of scalable fonts, which are displayed using an outline font
technology provided with the INT library. Resource XmNfontPath can be used to
specify the path to the directory where the files containing the font outlines reside.
Alternatively, you can use environment variable INT_FONT_PATH to specify this
directory. If neither resource XmNfontPath nor environment variable
INT_FONT_PATH is set, the current directory will be searched.

XmNwarning
Specifies the destination of warning messages that an INT widget might need to
display. Use one of the defined integer constants listed in the following table when
specifying a value for this resource:

You can combine destinations using a logical OR or an arithmetic + operation. For instance,
specify XintWARNING_PRINT + XintWARNING_POST to have any warning message
displayed on the screen and written to stderr.

Name Default
Type Access

XmNfontPath NULL
char *

CSG

XmNwarning XintWARNING_POST
int

CSG

Resource Value Description

XintWARNING_NONE No message will be output.

XintWARNING_PRINT Message will be written to stderr.

XintWARNING_POST (default) Message will be displayed in a dialog box.
32 EditTable Programming Guide

COMPBASE WIDGET METACLASS
CompBase Functions 2

c2-compb.fm5 Page 33 Friday, January 30, 2009 9:44 AM
CompBase Functions
The following functions are defined for hardcopy output and coordinate system
transformations. All of these functions can be applied to any widget instance of a class
derived from the CompBase widget class (such as EditObject, Grid or Image). In
addition, the composite hardcopy functions can be applied to any instance of a
composite widget such as a widget instantiated from the Motif Form, or the Motif
BulletinBoard widget classes.

Note: The INT EditTable widget class defines an additional function,
XintEditTableOutputPostscript, for hardcopy output.

Function Description

XintCGMDrawBox Tells CGM output whether or not to draw a box around a
CGM plot.

XintCGMGetDimensions Gets size in inches used by a widget.

XintCGMPixelToInch Converts size specified in pixels to a size specified in inches.

XintCGMSetVDCType Selects either real or integer output coordinates for CGM.

XintGetWidgetSize Returns size in pixels that a widget will occupy when output
to hardcopy.

XintHorizontalPixelToUser Pixel to User coordinates conversion in the
horizontal direction.

XintHorizontalUserToPixel User coordinates to Pixel conversion in the
horizontal direction.

XintOutputCGM Creates a CGM file containing the graphic
representation of a single widget.

XintOutputMontageCGM Creates a CGM file containing a montage composed of sev-
eral widgets.

XintOutputMontagePostscript Creates a PostScript file containing a montage composed of
several widgets.

XintOutputPostscript Creates a PostScript file containing the graphic representa-
tion of a single widget.

XintPostscriptGetDefaults Gets the PostScript page characteristics.

XintPostscriptSetBackground Sets the background for PostScript output.

XintPostscriptSetDefaults Sets the PostScript page characteristics.

XintVerticalPixelToUser Pixel to User coordinates conversion in vertical direction.

XintVerticalUserToPixel User to Pixel coordinates conversion in horizontal direction.
EditTable Programming Guide 33

COMPBASE WIDGET METACLASS
CompBase Functions2

c2-compb.fm5 Page 34 Friday, January 30, 2009 9:44 AM
XintCGMDrawBox

Sets a flag which tells to the CGM output routines XintOutputCGM and
XintOutputCompositeCGM whether or not to draw a rectangular box around the
plot.
void XintCGMDrawBox (flag)

where flag is a Boolean variable that should be set to True to have the box drawn
around the plot.

XintCGMGetDimensions

Returns the dimensions (in inches) that a widget (or combination of widgets) will
occupy when mapped to a plot. You usually call this function prior to calling a CGM
hardcopy function so that you can specify the appropriate dimensions in the CGM
hardcopy function call.
void XintCGMGetDimensions (...)

XintCGMPixelToInch

Converts a size specification from pixels to inches. This function can be used to
provide the plot size specification in inches required by function
XintOutputMontageCGM.
void XintCGMPixelToInch (...)

Widget widget The ID of the widget to be output.

float * width Width in inches of the widget’s extent.

float * height Height in inches of the widget’s extent.

Widget widget The ID of the widget.

int pwidth Width in pixels.

int pheight Height in pixels.

float * width Returns the width in inches.

float * height Returns the height in inches.
34 EditTable Programming Guide

COMPBASE WIDGET METACLASS
CompBase Functions 2

c2-compb.fm5 Page 35 Friday, January 30, 2009 9:44 AM
XintCGMSetVDCType

Allows the application to globally select the type of CGM output file to be created.
Output coordinate data can be either real, the default, or integer. The integer type is
provided because some CGM previewers and rasterizers do not support the floating
point format.
void XintCGMSetVDCType (...)

The argument type must be specified as one of the following defined constants.

XintGetWidgetSize

Returns the size in pixels that a widget will occupy when output to hardcopy. This
function is primarily used in conjunction with functions XintOutputMontagePostscript
or XintOutputMontageCGM to position the widgets to be output. The size returned by
this function is equal to the widget size, except when the argument is a Scroll or Motif
ScrolledWindow widget, in which case it will return the full size of the child widget.
void XintGetWidgetSize (...)

int type Specify one of the values below.

Resource Value Description

XintCGM_VDC_TYPE_INTEGER The coordinates are output in 16 bit integer for-
mat, as required by the CGM/PIP (Petroleum
Industry Profile) specification.

XintCGM_VDC_TYPE_REAL The coordinates are output in fixed point float-
ing format, as required by the CGM/PIP
(Petroleum Industry Profile) specification. This
is the default.

Widget widget The ID of the widget.

int * width Returns the width in pixels.

int * height Returns the height in pixels.
EditTable Programming Guide 35

COMPBASE WIDGET METACLASS
CompBase Functions2

c2-compb.fm5 Page 36 Friday, January 30, 2009 9:44 AM
XintHorizontalPixelToUser

Converts a pixel coordinate into the corresponding user coordinate using the default
horizontal coordinate system of a widget whose class is derived from the CompBase
widget class.
Boolean XintHorizontalPixelToUser (...)

The function returns False if pixel is outside the widget’s window.

XintHorizontalUserToPixel

Converts a user coordinate into the corresponding pixel coordinate using the default
horizontal coordinate system of a widget whose class is derived from the CompBase
widget class.
Boolean XintHorizontalUserToPixel (...)

The function returns False if user is outside the widget’s window.

XintOutputCGM

Writes a color CGM description of a widget or of the contents of a container widget
to a disk file. The geometry of the widgets inside a container widget is preserved.
However, widgets contained in a Motif ScrolledWindow widget are expanded to
their full size and the scrollbars are not displayed. Only widgets that are instances of
INT CompBase, Scroll, or Motif ScrolledWindow, Label, Text or TextField, or one
of their subclasses will be output.
Boolean XintOutputCGM (...)

Widget widget The ID of the CompBase derived widget.

int pixel Specifies the horizontal window coordinate.

float * user Returns the corresponding user coordinate.

Widget widget The ID of the CompBase derived widget.

float user Specifies the horizontal user coordinate.

int * pixel Returns the corresponding window coordinate.

Widget widget Widget for output.

char * filename Name of CGM file to be created.

float plot_width Specifies the width in inches of the CGM plot to be generated.

float plot_height Specifies the height in inches of the CGM plot to be generated.
36 EditTable Programming Guide

COMPBASE WIDGET METACLASS
CompBase Functions 2

c2-compb.fm5 Page 37 Friday, January 30, 2009 9:44 AM
In case of error, the function returns a warning message to the end-user (as controlled
by resource XmNwarning) and returns False. Otherwise, returns True.

XintOutputMontageCGM

Writes a color CGM file containing a montage of several widgets into a canvas. The
canvas size and the widget positions inside the canvas are specified in pixel units. The
convenience function XintGetWidgetSize can be used to obtain the size in pixels of
each widget. The widgets in the list must be of a class derived from CompBase, Scroll,
or Motif ScrolledWindow, Label, Text or TextField.

Boolean XintOutputMontageCGM (...)

In case of error, the function displays a warning message (as controlled by resource
XmNwarning) to the end user and returns False; otherwise, it returns True.

Data Type Arg Name Description

Widget * widget_list List of widgets to output.

int * xpos_list List of x coordinates for the widgets.

int * ypos_list List of y coordinates for the widgets.

int count Number of widgets to output.

char * filename Name of CGM file to be created.

int canvas_width Width of canvas in pixels.

int canvas_height Height of canvas in pixels.

float width Width of plot in inches.

float height Height of plot in inches.
EditTable Programming Guide 37

COMPBASE WIDGET METACLASS
CompBase Functions2

c2-compb.fm5 Page 38 Friday, January 30, 2009 9:44 AM
XintOutputMontagePostscript

Writes a color or monochrome PostScript file containing a montage of several
widgets into a canvas. The canvas size and the widget positions inside the canvas are
specified in pixel units. Convenience function XintGetWidgetSize can be used to
obtain the size in pixels of each widget. The widgets in the list must be from a class
derived from CompBase, Scroll, or Motif ScrolledWindow, Label, Text or TextField.
Boolean XintOutputMontagePostscript (...)

When the color_model argument is specified as XintCOLOR for a monochrome
device, a grayscale display will be produced. Specification of XintMONOCHROME
sets all lines and text to black. All fill areas will be grayscale.

The argument orientation must be specified as one of the following defined
constants:

Widget * widget_list List of widgets to output.

int * xpos_list List of x coordinates for the widgets.

int * ypos_list List of y coordinates for the widgets.

int count Number of widgets to output.

char * filename Name of PostScript file to be created.

int canvas_width Width of canvas in pixels.

int canvas_height Height of canvas in pixels.

float scale_factor Specify a real number greater than 0 (see below).

int color_model Specify XintMONOCHROME for monochrome output or
XintCOLOR for color output.

int orientation Specify one of the values below.

Resource Value Description

XintORIENTATION_PORTRAIT Image will be oriented as on screen.

XintORIENTATION_LANDSCAPE Image will be rotated 90 degrees clockwise from
the screen image.

XintORIENTATION_AUTOMATIC Image will be oriented so that the longest dimen-
sion (height or width) will be along the longest
dimension of the page.
38 EditTable Programming Guide

COMPBASE WIDGET METACLASS
CompBase Functions 2

c2-compb.fm5 Page 39 Friday, January 30, 2009 9:44 AM
The scale_factor argument in the function call specifies how the image inside the
widget window will be scaled when output to the PostScript file. If you specify 1, then
the image will be fitted to the page. If you specify a fractional number greater than 0
and less than 1, then the image will be scaled to that fraction of the page. If you specify
a number greater than 1, then the image will be scaled by that number and multiple
pages, as required by the amount of scaling, will be output to the PostScript file.

In case of error, the function displays a warning message to the end user (as controlled
by resource XmNwarning) and returns False; otherwise, it returns True.

XintOutputPostscript

Writes a scaled monochrome or color PostScript description of an INT widget, or of
all of the widgets inside of a container widget, to a disk file. When a container widget
is specified, the geometry of the widgets inside the container widget is preserved.
However, widgets contained in a Motif ScrolledWindow widget or an INT Scroll
widget are expanded to their full size and the scrollbars are not displayed. Only
widgets that are instances of INT CompBase, Scroll, or Motif ScrolledWindow, Label,
LabelGadget, Text or TextField, or one of their subclasses will be output.
Boolean XintOutputPostscript (...)

When the color_model argument is specified as XintCOLOR for a monochrome
device, a grayscale display will be produced. Specification of XintMONOCHROME
sets all lines and text to black. All fill areas will be grayscale.

Widget widget Widget for output.

char * filename Name of PostScript file to be created.

float scale_factor Specify a real number greater than 0 (see below).

int color_model Specify XintMONOCHROME for monochrome output
or XintCOLOR for color output.

int orientation Specify one of the values below.
EditTable Programming Guide 39

COMPBASE WIDGET METACLASS
CompBase Functions2

c2-compb.fm5 Page 40 Friday, January 30, 2009 9:44 AM
The argument orientation must be specified as one of the following:

The scale_factor argument in the function call specifies how the image inside the
widget window will be scaled when output to the PostScript file. If you specify 1,
then the image will be fitted to the page. If you specify a fractional number greater
than 0 and less than 1, then the image will be scaled to that fraction of the page. If
you specify a number greater than 1, then the image will be scaled by that number
and multiple pages, as required by the amount of scaling, will be output.

In case of error, the function displays a warning message to the end user (as
controlled by resource XmNwarning) and returns False; otherwise, it returns True.

XintPostscriptGetDefaults

Obtains the PostScript output page characteristics set by using function
XintPostscriptSetDefaults.
void XintPostscriptGetDefaults (...)

XintPostscriptSetBackground

Sets the background color for the PostScript output. By default, the PostScript output
will not paint the background. Use this function if you want the plot background to
be painted.
void XintPostscriptSetBackground (Pixel fill_color)

where fill_color is a Pixel value. Set fill_color to XintNO_FILL to have no
background painted.

Resource Value Description

XintORIENTATION_PORTRAIT Image will be oriented as on screen.

XintORIENTATION_LANDSCAPE Image will be rotated 90 degrees clockwise from
the screen image.

XintORIENTATION_AUTOMATIC Image will be oriented so that the longest dimen-
sion (height or width) will be along the longest
dimension of the page.

int * resolution Returns a pointer to an integer specifying the page resolu-
tion in dots per inch.

float * page_width Returns a pointer to a floating point number
specifying the page width in inches.

float * page_height Returns a pointer to a floating point number
specifying the page height in inches.
40 EditTable Programming Guide

COMPBASE WIDGET METACLASS
CompBase Functions 2

c2-compb.fm5 Page 41 Friday, January 30, 2009 9:44 AM
XintPostscriptSetDefaults

Sets the PostScript output page characteristics used by the XintOutputPostscript.
void XintPostscriptSetDefaults (...)

XintVerticalPixelToUser

This function converts a pixel coordinate into the corresponding user coordinate in the
default vertical coordinate system of a widget whose class is derived from the
XintCompBase widget class.
Boolean XintVerticalPixelToUser (...)

The function returns False if argument pixel is outside the widget’s boundaries.

XintVerticalUserToPixel

This function converts a user coordinate into the corresponding pixel coordinate using
the default vertical coordinate system of a widget whose class is derived from the
XintCompBase widget class.
Boolean XintVerticalUserToPixel (...)

The function returns False if argument user is outside the widget’s boundaries.

int resolution Specifies the page resolution in dots per inch.

float page_width Specifies the page width in inches.

float page_height Specifies the page height in inches.

Widget widget The ID of the CompBase widget.

int pixel Specifies the pixel location in the vertical direction.

float * user Returns the user coordinate corresponding to argument pixel.

Widget widget The ID of the CompBase widget.

float user Specifies the user location in the vertical direction.

int * pixel Returns the pixel coordinate corresponding to argument user.
EditTable Programming Guide 41

COMPBASE WIDGET METACLASS
CompBase Functions2

c2-compb.fm5 Page 42 Friday, January 30, 2009 9:44 AM
42 EditTable Programming Guide

c2-edito.fm5 Page 43 Thursday, January 22, 2009 12:28 PM
EditObject Widget Class 3
Overview

The EditObject widget class provides support for displaying, editing, and
storing/retrieving graphic objects created using the Graphic object class. Any widget
class that is a subclass of the EditObject widget class inherits the ability to display,
edit, and store/retrieve graphic objects. The resources, functions and callbacks listed
in this section are only useful when EditTable is used in conjunction with the INT
Chart and/or INT Graphic object library. If you are not using those two products you
can skip this section.

The display and editing capabilities of the EditObject class are implemented through
a comprehensive set of actions, callbacks and convenience functions. Editing
capabilities include the ability to select one or more objects and to move, size or
shape objects. A set of convenience functions is provided for saving and restoring
objects to or from an ASCII file. A clipboard mechanism provides cut and paste
functionality inside an application or between two different applications that use
EditObject widgets (or widgets from a subclass of the EditObject widget class).

This chapter includes the following sections:

• Creating And Deleting Objects on page 44

• Input/Output on page 45

• Clipboard on page 45

• Locator on page 45

• EditObject Widget Appearance on page 46

• Inherited Behavior and Resources on page 46

• EditObject Actions on page 52

• EditObject Translations on page 55

• EditObject Callbacks on page 56

• EditObject Functions on page 62
EditTable Programming Guide 43

EDITOBJECT WIDGET CLASS
Creating an EditObject Widget3

c2-edito.fm5 Page 44 Thursday, January 22, 2009 12:28 PM
Creating an EditObject Widget
The main purpose of the EditObject widget class is to serve as a superclass for other
INT widget classes such as Grid or VirtualGrid. However it is possible to instantiate
an EditObject widget directly if you want an empty window that supports the
drawing and editing of Graphic objects.

Coordinate System
The EditObject class does not allow the application to define its own coordinate
system. An EditObject widget always uses a linear coordinate system that is between
0.0 and 100.0 both horizontally and vertically. Other classes based upon the
EditObject widget class (such as Grid or PlotXY) allow the application to define a
coordinate system. You can use the functions provided in the CompBase widget
class to do transformations between pixel values and the EditObject coordinate
system.

Creating And Deleting Objects
Graphic objects can be created using the standard Motif widget creation process.
Alternatively, a convenience function, EditObjectInsert, provides for the interactive
creation of an Graphic object by the end user or application. Like other widgets,
graphic objects are automatically destroyed when their parent is destroyed. Objects
can be also be destroyed using Motif function XtDestroyWidget or function
XintEditObjectDestroyObject which is faster.

Object Selection
Once an object is created, it can be selected using BSelect. Handles are displayed
around the edges of a selected object (or group of objects) to indicate it has been
selected. Multiple selection and grouping/ungrouping of objects is also supported.
44 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
Object Editing 3

c2-edito.fm5 Page 45 Thursday, January 22, 2009 12:28 PM
Object Editing
Objects can be moved, sized and shaped interactively. Size and Shape operations are
identical for all rectangular Graphic objects (such as Oval and TextObj). For objects
instantiated using subclasses of the MultiPoint class (such as PolyLine and Wavelet), the
Shape operation is equivalent to a Move point operation. The Move, Size and Shape
operations are activated using BSelect Drag and terminated using BSelect Release. A
special operation, called Adjust, combines the Shape and Move operations into one action.
If the user performs BSelect Drag close to a handle, a Shape operation will be performed,
otherwise a Move operation is performed. Finally, a specific set of actions is provided to
interactively add or remove points for MultiPoint based objects.

Note: Objects can also be edited from the program, just like any other Motif
widget, using the XtSetValues or XtVaSetValues calls.

Object Display
Objects are displayed in the order they have been created. The object created first is drawn
first, while the object created last is drawn last and thus will appear to be on top of the other
objects. A set of convenience functions allows the application to move objects forward or
backward in the display order.

Input/Output
The EditObject widget class provides a set of convenience functions to write a list
of objects into a file and to retrieve them later on. The objects in an object
description file can be read by any widget created from a subclass of the EditObject
widget class.

Clipboard
A clipboard mechanism is implemented for Cut, Copy and Paste operations on
Graphic objects. The clipboard mechanism provides cut/copy/paste operations
among EditObject widgets inside the current application or between two different
applications. For example, it is possible to Cut an object from an EditObject widget
in one application and Paste it into an EditObject widget belonging to another
application.

Locator
The EditObject provides a callback and a set of actions that allow the application to
track the cursor location.
EditTable Programming Guide 45

EDITOBJECT WIDGET CLASS
EditObject Widget Appearance3

c2-edito.fm5 Page 46 Thursday, January 22, 2009 12:28 PM
EditObject Widget Appearance
The EditObject widget appears as an empty rectangular window. In Figure 18, a
Chart object and several Graphic objects have been created in an EditObject widget:

Figure 18. EditObject Containing a Chart and Various Graphic Objects

Inherited Behavior and Resources
The EditObject widget inherits behavior and resources from the Core, Composite,
Constraint, Manager and CompBase classes.
• Class pointer is xintEditObjectWidgetClass
• Class name is XintEditObject
• Header file is included as <Xint/EditObject.h>
46 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
Inherited Behavior and Resources 3

c2-edito.fm5 Page 47 Thursday, January 22, 2009 12:28 PM
Resources The following resources are defined by the EditObject widget class.

Name Default
Type Access

XmNallowDrag False
Boolean

CSG

XmNallowDrop False
Boolean

CSG

XmNareaSelectionCallback NULL
XtCallbackList

C

XmNcopyCallback NULL
XtCallbackList

C

XmNcursorType XC_crosshair
int

CSG

XmNcutCallback NULL
XtCallbackList

C

XmNdragDropCallback NULL
XtCallbackList

C

XmNeditObjectCallback XtCallbackList
NULL

C

XmNflip False
Boolean

CSG

XmNhandleColor “blue”
Pixel

CSG

XmNhandleSize 4
int

CSG

XmNinsertObjectCallback NULL
XtCallbackList

C

XmNlocatorCallback NULL
XtCallbackList

C

XmNobjectDeselectionCallback NULL
XtCallbackList

C

XmNobjectEditMode XintEDIT_NONE
int

CSG

XmNobjectSelectionCallback NULL
XtCallbackList

C

XmNpasteCallback NULL
XtCallbackList

C

EditTable Programming Guide 47

EDITOBJECT WIDGET CLASS
Inherited Behavior and Resources3

c2-edito.fm5 Page 48 Thursday, January 22, 2009 12:28 PM
XmNallowDrag

Specifies whether or not the widget can be used as a drag site for Motif drag and drop
operations. Refer to “XmNdragDropCallback” on page 49 for information about
selectively allowing or disallowing drag operations.

XmNallowDrop

Specifies whether or not the widget can be used as a drop site for Motif drag and drop
operations. Refer to “XmNdragDropCallback” on page 49 for information about
selectively allowing or disallowing drag operations.

XmNareaSelectionCallback

Specifies a list of callbacks that is called when a user has selected a rectangular area
in the widget window. The callback list is called by the action EndAreaSelection.
The coordinates of the selection are returned in the callback structure. Each subclass
of the EditObject widget class inherits this resource, but returns a unique callback
structure to the associated callback list. For the EditObject widget class, the callback
structure returned is XintEditObjectAreaSelectionCallbackStruct.

XmNcopyCallback

Specifies a list of callbacks that is called when function XintEditObjectCopy is
invoked. The list of selected objects is returned in the XintEditObjectCallbackStruct callback
structure. The reason sent by the callback is XintCR_COPY.

XmNcursorType

Specifies the type of cursor to display in the EditObject widget window. Specify any
valid cursor defined by the X Window System or specify
XintCROSS_HAIR_CURSOR to obtain a drawn cross hair cursor. The cross hair
cursor displays horizontal and vertical lines that intersect at the cursor location and
extend across the EditObject widget window.

XmNpointSelectionTolerance 4
int

CSG

XmNresourceDialogCallback XtCallbackList
NULL

C

XmNrubberbandCallback NULL
XtCallbackList

C

XmNselectionCallback NULL
XtCallbackList

C

Name(continued)
Default

Type Access
48 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
Inherited Behavior and Resources 3

c2-edito.fm5 Page 49 Thursday, January 22, 2009 12:28 PM
XmNcutCallback

Specifies a list of callbacks that is called when function XintEditObjectCut is invoked.
The list of selected objects is returned in the XintEditObjectCallbackStruct callback
structure. The reason sent by the callback is XintCR_CUT.

XmNdragDropCallback

Specifies a list of callbacks called when application initiates a Motif drag or drop
operation. This callback will only be called if resource XmNallowDrag (for a drag) or
XmNallowDrop (for a drop) are set to True. The action controlling the drag operation
is MotifDragStart. There is no specific action for the drop operation.

XmNeditObjectCallback

Specifies a list of callbacks that are called when a graphic object is being edited
interactively. Supported operations are object move and shape. The callback structure
is XintEditObjectCallbackStruct. Reasons returned by the callback are
XintCR_OBJECT_EDIT_START, XintCR_EDIT_OBJECT_EDIT and
XintCR_OBJECT_EDIT_END.

XmNflip
Specifies how objects based on the Graphic class that have sampled data (such as
Wavelet and LogCurve) are drawn. When this resource is set to True, the data samples
are associated with the vertical axis. When the resource is False, the data samples are
associated with the horizontal axis.

XmNhandleColor

Specifies pixel colors used to draw handle bars of Graphic object when selected.

XmNhandleSize

Specifies size in pixels of handle bars drawn when an Graphic object elected.

XmNinsertObjectCallback
Specifies a list of callbacks that is called after the completion of an object insert
operation, initiated using function XintEditObjectInsert.

XmNlocatorCallback

Specifies a list of callbacks that is called by the Locator action. This action is typically
connected to the cursor movement by the translation table. Every subclass of the
EditObject widget class inherits this resource, but some subclasses return a unique
callback structure to the associated callback list. For the EditObject widget class, the
callback structure is XintEditObjectLocatorCallbackStruct..
EditTable Programming Guide 49

EDITOBJECT WIDGET CLASS
Inherited Behavior and Resources3

c2-edito.fm5 Page 50 Thursday, January 22, 2009 12:28 PM
XmNobjectDeselectionCallback

Specifies a list of callbacks that is called when the function
XintEditObjectDeselectObject is called or when a Graphic object is deselected in the
EditObject widget’s window. Both the deselected object and the list of objects that
remain selected are returned in the callback structure.

XmNobjectEditMode

Specifies the edit mode for the Graphic objects contained in the EditObject window.
Most basic editing operations defined on Graphic objects are handled by the
ObjectEdit actions (ObjectEditStart, ObjectEdit and ObjectEditEnd). If the action
ObjectEditStart has no argument specified, then the corresponding editing operation
is defined using the resource XmNobjectEditMode. Two functions,
XintEditObjectSetEditMode and XintEditObjectGetEditMode, set and get the value
of this resource. You can specify one of the following constants for the value of this
resource:

XmNobjectSelectionCallback

Specifies a list of callbacks that is called when function XintEditObjectSelectObject
is called or when a Graphic object is selected in the widget window. Both the
selected object and the list of currently selected objects are returned in the
XintEditObjectSelectionCallbackStruct callback structure. The reason sent by the
callback is XintCR_OBJECT_SELECTION.

Resource Value Description

XintEDIT_NONE ObjectEdit actions do nothing.

XintEDIT_MOVE ObjectEdit actions implement a Move operation.

XintEDIT_SIZE ObjectEdit actions implement a Size operation.

XintEDIT_SHAPE ObjectEdit actions implement a Shape operation.

XintEDIT_ADJUST ObjectEdit actions implement an Adjust operation. Adjust is
a Shape operation if the object selection is close to a han-
dle bar or a Move operation if the object selection is any-
where else inside the object.

XintEDIT_RUBBERBAND ObjectEdit actions implement a Rubberband operation.
Callback XmNrubberbandCallback is invoked continu-
ously as the pointer moves.

XintEDIT_INSERT Object Edit actions implement interactive object cre-
ation. Do not specify this value directly, but use the func-
tion XintEditObjectInsert instead.
50 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
Inherited Behavior and Resources 3

c2-edito.fm5 Page 51 Thursday, January 22, 2009 12:28 PM
XmNpasteCallback

Specifies a list of callbacks that is called when function XintEditObjectPaste is called.
The list of selected objects is returned in the XintEditObjectEditCallbackStruct
callback structure. The reason sent by the callback is XintCR_PASTE.

XmNpointSelectionTolerance

Specifies the margin of tolerance, in pixels, for selecting an object or an object’s point.

XmNresourceDialogCallback

Specifies a list of callbacks that is called when action ResourceDialog is invoked.
Some objects, such as Text, AxisObject or Chart have a built-in resource editor that is
activated from action ResourceDialog. Callback XmNresourceDialogCallback can be
used to prevent the built-in editor from being activated, so that the application can
provide its own resource editor. This callback can also be used by the application to
provide a resource editor for objects that don’t have a built-in one.

XmNrubberbandCallback

Specifies a list of callbacks to be called by actions ObjectEditStart, ObjectEdit and
ObjectEditMode, when the XmNobjectEditMode resource is set to
XintEDIT_RUBBERBAND. If the XmNobjectEditMode resource is set to
XintEDIT_RUBBERBAND then the corresponding action does not do anything but
invoke this callback list. It is up to the application to implement rubberbanding using
(for example) the function XintGraphicRubberbandPolyline.

XmNselectionCallback

Specifies a list of callbacks that is called when a user selects the EditObject widget.
The coordinates of the selection are returned in the XintEditObjectCallbackStruct
callback structure. The reason sent by the callback is XintCR_SELECTION.
EditTable Programming Guide 51

EDITOBJECT WIDGET CLASS
EditObject Actions3

c2-edito.fm5 Page 52 Thursday, January 22, 2009 12:28 PM
EditObject Actions
The following action procedures are defined by the EditObject widget and can be
tied to user inputs via a translation table.

Name Description

ChangeCursorMask() Changes the color of the cross hair cursor in increment.

DrawCursor() Draws the cross hair cursor at the location of the mouse
pointer.

EndDrawCursor() Terminates the cross hair drawing operation.

InitDrawCursor() Initiates the cross hair drawing operation.

TraverseCurrent() Moves the focus to the current widget.

PreviousTabGroup() Move the focus to the previous tab group.

NextTabGroup() Moves the focus to the next tab group.

Increment(left) Scrolls left one increment (if implemented by subclass).

Increment(right) Scrolls right one increment (if implemented by subclass).

Increment(up) Scrolls up one increment (if implemented by subclass).

Increment(down) Scrolls down one increment (if implemented by subclass).

Locator() Whenever the cursor is moved inside the widget window, this
action calls the list of procedures specified by XmNlocator-
Callback.

MotifDragStart() Initiates a Motif drag operation and calls callback XmN-
dragDrop Callback. Action is disabled if resource XmNal-
lowDrag is False.

Page(left) Scrolls left one page (if implemented by subclass).

Page(right) Scrolls right one page (if implemented by subclass).

Page(up) Scrolls up one page (if implemented by subclass).

Page(down) Scrolls down one page (if implemented by subclass).

SelectionCallback() Whenever a Button is pressed inside the widget window, this
action calls the list of procedures
specified by resource XmNselectionCallback.

InitAreaSelection(callback) Initiates the selection of a rectangular area in the widget
window. Callback XmNareaSelectionCallback will be
called by action EndAreaSelection when the selection is
terminated.
52 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
EditObject Actions 3

c2-edito.fm5 Page 53 Thursday, January 22, 2009 12:28 PM
InitAreaSelection(single) Initiates the selection of a rectangular area within which
all graphic objects included will be selected. Previously
selected objects are deselected first.

InitAreaSelection(extend) Initiates the selection of a rectangular area within which
all graphic objects included will be selected. The new
selection will extend the current selection.

ExtendAreaSelection() Draws a rectangle bounding the area being selected.

EndAreaSelection() Terminates the area selection operation. Calls XmNarea-
SelectionCallback or selects the Graphic objects con-
tained in the selection depending on the argument of the
action InitAreaSelection.

ObjectSelect(single) Selects a Graphic object. Previously selected objects are
deselected first.

ObjectSelect(extend) Selects a Graphic object and adds it to the list of selected
objects.

ObjectEditStart() Initiates an editing operation on the selected Graphic
object. The type of editing operation such as Move, Size,
Shape, etc. is defined by resource XmNobjectEditMode.
This action is also used internally by the widget for creat-
ing an object interactively.

ObjectEditStart(move) Initiates a Move operation on the selected Graphic object.

ObjectEditStart(shape) Initiates a Shape operation. Shape allows the user to move
the points of MultiPoint based object. It is equivalent to a
Size for all other objects.

ObjectEditStart(size) Initiates Size operation on selected Graphic object.

ObjectEditStart(adjust) Initiates an Adjust operation on the selected object. Adjust
is a combination of Shape when the selection is close to a
handle bar and Move otherwise.

ObjectEditStart (rubberband) Initiates a rubberband operation where callback XmNrub-
berbandCallback is called continuously as the pointer
moves. It is up to the application to actually draw a rubber-
band shape.

ObjectEdit() Continues editing operation initiated by action ObjectE-
ditStart.

Name (continued) Description
EditTable Programming Guide 53

EDITOBJECT WIDGET CLASS
EditObject Actions3

c2-edito.fm5 Page 54 Thursday, January 22, 2009 12:28 PM
ObjectEditEnd() Terminates the editing operation initiated by action
ObjectEditStart and calls callback XmNverifyCallback
(callback is defined in Graphic class). When XmNobject-
EditMode is set to XintEDIT_INSERT and the object
being edited is not a MultiPoint object, terminates the
insertion operation and calls the XmNinsertObjectCall-
back.

ObjectEditEnd(m) Terminates the editing operation initiated by action ObjectE-
ditStart and calls callback XmNverifyCallback (callback is
defined in Graphic class). When XmNobjectEditMode is
set to XintEDIT_INSERT and the object being edited is a
MultiPoint object, terminates the insertion operation initiated
by action ObjectEditStart and calls callback XmNinsertOb-
jectCallback.

ObjectPointAdd(b) Adds a point to a MultiPoint object. The point is inserted
at the beginning of the list.

ObjectPointAdd(e) Adds a point to a MultiPoint object. The point is inserted
at the end of the list.

ObjectPointAdd(x) Adds a point to a MultiPoint object. The point is inserted
according to its horizontal coordinate.

ObjectPointAdd(y) Adds a point to a MultiPoint object. The point is inserted
according to its vertical coordinate.

ObjectPointDelete() Deletes a point from a MultiPoint object.

ObjectCancel() Cancels an operation on an object.

Transform3DStart(scale) Initiates the scaling of a 3D object.

Transform3DStart(shift) Initiates the translation of a 3D object.

Transform3DStart(rotate) Initiates the rotation of a 3D object.

Transform3D() Continues the 3D operation initiated by Transform3D.

Transform3DEnd() Terminates the 3D operation initiated by Transform3D.

Name (continued) Description
54 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
EditObject Translations 3

c2-edito.fm5 Page 55 Thursday, January 22, 2009 12:28 PM
EditObject Translations
The following translation table is used by an EditObject widget. These default
translations can be overridden by the end user or application programmer.

Event Sequence Actions Invoked

<EnterWindow> ManagerEnter() InitDrawCursor()

<LeaveWindow> ManagerFocus() EndDrawCursor()

<FocusIn> ManagerFocusIn()

<FocusOut> ManagerFocusOut()

Ctrl <Key>k ChangeCursorMask()

!Shift <Key> Tab PreviousTabGroup()

None <Key> Tab NextTabGroup()

!Shift <Btn1Down> TraverseCurrent() SelectionCallback()
InitAreaSelection(callback)
ObjectEditEnd() Locator()

!Ctrl <Btn1Down> TraverseCurrent() SelectionCallback()
InitAreaSelection(extend)
ObjectSelect(extend) Locator()

None <Btn1Down> TraverseCurrent() ObjectSelect(single)
ObjectEditStart() Locator()
SelectionCallback() InitAreaSelection(single)

 None <Btn2Down> ObjectEditEnd(m) SelectionCallback() MotifDragStart()

<Btn1Up> EndAreaSelection() ObjectEditEnd()

None <Btn3Down> SelectionCallback() Transform3DStart(rotate)

Ctrl <Btn3Down> Transform3DStart(scale)

Shift <Btn3Down> Transform3DStart(shift)

<Btn3Motion> Transform3D()

None <Btn3Down> SelectionCallback() Transform3DStart(rotate)
EditTable Programming Guide 55

EDITOBJECT WIDGET CLASS
EditObject Callbacks3

c2-edito.fm5 Page 56 Thursday, January 22, 2009 12:28 PM
EditObject Callbacks
The following callbacks are defined by a EditObject widget.

Name Structure Reason

XmNareaSelectionCallback XintEditObjectArea-
SelectionCallbackStruct

XintCR_AREA_SELECTION

XmNselectionCallback XintEditObjectCallback-
Struct

XintCR_SELECTION

XmNcopyCallback XintEditObjectEdit-
CallbackStruct

XintCR_COPY

XmNcutCallback XintEditObjectEdit-
CallbackStruct

XintCR_CUT

XmNdragDropCallback XintEditObjectDragDrop-
CallbackStruct

XintCR_DRAG
XintCR_DROP

XmNinsertObjectCallback XintEditObjectInsert-
CallbackStruct

XintCR_INSERT_OBJECT

XmNlocatorCallback XintEditObjectLocatorCall-
backStruct

XintCR_LOCATOR

XmNobjectDeselection-
Callback

XintEditObjectSelection-
CallbackStruct

XintCR_OBJECT_
DESELECTION

XmNobjectSelection-
Callback

XintEditObjectSelection-
CallbackStruct

XintCR_OBJECT_
SELECTION

XmNpasteCallback XintEditObjectEdit-
CallbackStruct

XintCR_PASTE

XmNrubberbandCallback XintEditObjectRubberband-
CallbackStruct

XintCR_RUBBERBAND_
START
XintCR_RUBBERBAND
XintCR_RUBBERBAND_
END
56 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
EditObject Callbacks 3

c2-edito.fm5 Page 57 Thursday, January 22, 2009 12:28 PM
XintEditObjectAreaSelectionCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectAreaSelectionCallbackStruct, returned to each procedure in the
callback list specified by the resource XmNareaSelectionCallback.

Each subclass of the EditObject widget class defines its own callback structure for the
callback list specified as the value of the XmNareaSelectionCallback resource. Only
instances of the EditObject widget class use the area selection callback structure
described above.

XintEditObjectCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectCallbackStruct, returned to each procedure in the callback list specified
by the resource XmNselectionCallback.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

int x X pixel coordinate of the upper left corner of the
selected rectangle.

int y Y pixel coordinate of the upper left corner of the
selected rectangle.

int width Width in pixels of the selected rectangle.

int height Height in pixels of the selected rectangle.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

float user_x X user coordinate of the cursor location.

float user_y Y user coordinate of the cursor location.

int pixel_x X pixel coordinate of the cursor location.

int pixel_y Y pixel location of the cursor location.

Object object ID of object being edited (for XmNeditObjectCallback
only).
EditTable Programming Guide 57

EDITOBJECT WIDGET CLASS
EditObject Callbacks3

c2-edito.fm5 Page 58 Thursday, January 22, 2009 12:28 PM
XintEditObjectDragDropCallbackStruct

The following ordered table lists the members of the callback structure
XintEditObjectDragDropCallbackStruct, returned to each procedure in the callback
list specified by the resource XmNdragDropCallback.

XintEditObjectEditCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectEditCallbackStruct, returned to each procedure in the callback list
specified by resources XmNcopyCallback, XmNcutCallback and
XmNpasteCallback.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Object object Graphic object being dragged or dropped to. This field is
NULL if drag or drop is not from or to a graphic object.

int operation This field is 0 on a drag. On a drop, it can be set to
XintDROP_COPY, XintDROP_MOVE or
XintDROP_LINK. You can modify this field on a drop
to change the operation.

Atom * atoms Array of source or destination atoms supported.

int atom_count Size of array atoms.

int x,y Location of the pointer when drag/drop started.

Boolean doit Set to False to cancel the drag or drop operation.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Object list List of objects to be edited.

int count Number of objects to be edited.
58 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
EditObject Callbacks 3

c2-edito.fm5 Page 59 Thursday, January 22, 2009 12:28 PM
XintEditObjectSelectionCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectSelectionCallbackStruct, returned to each procedure in the callback list
specified by resources XmNobjectSelectionCallback and
XmNobjectDeselectionCallback.

XintEditObjectInsertCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectInsertCallbackStruct, returned to each procedure in the callback list
specified by resource XmNinsertObjectCallback.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Object object The ID of the object selected or deselected. If multiple
objects have been selected/deselected, it contains the ID
of the first object in the list. See select_list to access all
the selected/deselected objects.

Object * select_list Points to the list of objects selected/deselected in this
operation.

int select_count The number of selected/deselected objects.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Object object The ID of the new object.

Boolean doit Set to False if you don’t want the object to be created.
EditTable Programming Guide 59

EDITOBJECT WIDGET CLASS
EditObject Callbacks3

c2-edito.fm5 Page 60 Thursday, January 22, 2009 12:28 PM
XintEditObjectLocatorCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectLocatorCallbackStruct, returned to each procedure in the callback
list specified by resource XmNlocatorCallback.

Some subclasses of the EditObject widget class define their own callback structures
for the callback list specified as the value of the XmNlocatorCallback resource.
Instances of the EditObject widget class use the locator callback structure described
above.

XintEditObjectResourceDialogCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectResourceDialogCallbackStruct, returned to each procedure in the
callback list specified by resource XmNresourceDialogCallback.

Data
Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback. Contains the
window coordinates of the cursor.

int pixel_x The X location of the cursor in the window coordinate system.

int pixel_y The Y location of the cursor in the window coordinate system.

float user_x The X location of the cursor hot spot in the user coordinate system.

float user_y The Y location of the cursor hot spot in the user coordinate sys-
tem.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback. Contains the
window coordinates of the cursor.

Object object ID of the selected object.

Boolean doit Set to False to prevent the built-in resource editor from
being activated.
60 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
EditObject Callbacks 3

c2-edito.fm5 Page 61 Thursday, January 22, 2009 12:28 PM
XintEditObjectRubberbandCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectRubberbandCallbackStruct, returned to each procedure in the callback
list specified by resource XmNrubberbandCallback.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

int start_x The X location of the cursor when the rubberband operation
started.

int start_y The Y location of the cursor when the rubberband operation
started.

int x_offset The offset between the current location of the pointer and
the original X location.

int y_offset The offset between the current location of the pointer and
the original Y location.
EditTable Programming Guide 61

EDITOBJECT WIDGET CLASS
EditObject Functions3

c2-edito.fm5 Page 62 Thursday, January 22, 2009 12:28 PM
EditObject Functions
The following functions are defined for creating and manipulating an EditObject
widget.

Function Name Description

XintCreateEditObject Creates an EditObject widget.

XintDrawCursorFromData Causes a cross hair cursor to be drawn at a
specified location in the EditObject’s win-
dow

XintEditObjectBack Moves the current object behind all other
objects in the widget.

XintEditObjectCopy Copies the selected objects into the clip-
board.

XintEditObjectCurrent Returns the last object selected.

XintEditObjectCut Copies all selected objects into the clip-
board and destroys them.

XintEditObjectDeselectAll Deselects all currently selected objects.

XintEditObjectDeselectObject Removes the specified object from the
selected list.

XintEditObjectDestroyObject Fast destroy function for objects.

XintEditObjectFreeze Controls the update of an EditObject dis-
play.

XintEditObjectFront Moves the current object in front of all
other objects in the widget.

XintEditObjectGetIntersectList Returns a list containing all of the objects
that are children of the EditObject widget
and intersect a specified rectangle.

XintEditObjectGetList Returns a list containing all of the objects
that are children of the specified EditOb-
ject widget.

XintEditObjectGroup Groups the selected objects.

XintEditObjectInsert Creates and inserts an object interactively.

XintEditObjectLower Moves the current object one place down
in the stacking order.

XintEditObjectMove Allows interactive movement of the
selected object.
62 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
EditObject Functions 3

c2-edito.fm5 Page 63 Thursday, January 22, 2009 12:28 PM
XintEditObjectNew Destroys all objects belonging the EditOb-
ject widget.

XintEditObjectOpen Manages a dialog that allows the loading
of an ASCII object description file.

XintEditObjectPaste Pastes the objects in the clipboard into the
EditObject widget.

XintEditObjectRaise Moves the current object one place up in
the stacking order.

XintEditObjectReadFile Reads an ASCII file containing a descrip-
tion of objects and places them into the Edi-
tObject widget.

XintEditObjectSave Saves all the objects of and EditObject
widget into an ASCII file.

XintEditObjectSaveAs Manages a dialog box that prompts for the
name of a file to store an ASCII descrip-
tion of the objects of an EditObject wid-
get.

XintEditObjectSelectAll Selects all the Graphic objects of an Edi-
tObject widget.

XintEditObjectSelectList Returns the list of the selected objects.

XintEditObjectSelectObject Adds an object to the list of selected
objects.

XintEditObjectSetEditMode Sets the value of resource XmNobjectE-
ditMode.

XintEditObjectSize Allows the interactive sizing of the cur-
rently selected object.

XintEditObjectUngroup Ungroups the currently selected group
object.

XintEditObjectWriteFile Saves all the objects of an EditObject wid-
get into an ASCII file.

Function Name (continued) Description
EditTable Programming Guide 63

EDITOBJECT WIDGET CLASS
EditObject Functions3

c2-edito.fm5 Page 64 Thursday, January 22, 2009 12:28 PM
XintCreateEditObject

XintCreateEditObject creates an unmanaged EditObject widget.
Widget XintCreateEditObject (...)

XintDrawCursorFromData

Causes the cross hair cursor to be drawn at a specified location in an EditObject
widget. This function has an effect only when the value of resource
XmNcursorType is XintCROSS_HAIR_CURSOR.
void XintDrawCursorFromData (...)

XintEditObjectBack

Changes the stacking order of a widget so that the specified object becomes last in
the display list. If argument object is NULL, the function will be applied to the
currently selected object.
void XintEditObjectBack (Widget widget, Object object)

widget ID of an EditObject widget

object ID of the object to move to the back.

XintEditObjectCopy

Places all the selected Graphic objects of an EditObject widget into the clipboard.
Objects on the clipboard can be pasted back into any EditObject widget using
function XintEditObjectPaste.
void XintEditObjectCopy (Widget widget)

widget ID of an EditObject widget.

Widget parent Parent of new EditObject widget.

char * name Name of new EditObject widget.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.

Widget widget EditObject widget ID

float user_x The horizontal location of where the cursor is to be drawn.

float user_y The vertical location of where the cursor is to be drawn.
64 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
EditObject Functions 3

c2-edito.fm5 Page 65 Thursday, January 22, 2009 12:28 PM
XintEditObjectCurrent

Returns the currently selected object of an EditObject widget.
Object XintEditObjectCurrent (Widget widget)

widget The ID of an EditObject widget.

XintEditObjectCut

Places the selected objects into the clipboard and then destroys them. Objects on the
clipboard may be pasted into any EditObject widget using function
XintEditObjectPaste.
void XintEditObjectCut (Widget widget)

widget The ID of an EditObject widget.

XintEditObjectDeselectAll

Deselects all the selected objects of an EditObject widget.
void XintEditObjectDeselectAll (Widget widget)

widget The ID of an EditObject widget.

XintEditObjectDeselectObject

Allows the application programmer to remove a Graphic object from the list of
selected objects.
void XintEditObjectDeselectObject (Widget widget,

 Object object)

widget The ID of an EditObject widget

object The ID of the object to remove from the selected list.

XintEditObjectDestroyObject

Destroys an object, and is identical functionally to XtDestroyWidget except that it is
faster.
void XintEditObjectDestroyObject (Object object)

object The ID of the object to destroy.
EditTable Programming Guide 65

EDITOBJECT WIDGET CLASS
EditObject Functions3

c2-edito.fm5 Page 66 Thursday, January 22, 2009 12:28 PM
XintEditObjectFreeze

Controls the update of an EditObject display. When this function is called with
argument state set to True, the display will not be updated until the function is called
again with state set to False. This function is typically used when changes are made
to multiple objects to minimize flashing on the screen.
void XintEditObjectFreeze (...)

XintEditObjectFront

Changes the stacking order of a widget so that the specified object becomes first in
the display list. If argument object is NULL, the function will be applied to the
currently selected object.
void XintEditObjectFront (Widget widget, Object object)

widget The ID of an EditObject widget

object The ID of the object to move to the front.

XintEditObjectGetIntersectList

Returns a list of all of the objects within the specified rectangle that are children of
an EditObject widget. This includes objects that are only partially inside the defined
area.
Object* XintEditObjectGetIntersectList (...)

If the specified EditObject widget has no Graphic objects as children or if the
intersection of the specified rectangle and the EditObject widget is empty, then
NULL is returned. The list returned must be freed by the application when it has
finished with it.

Widget widget EditObject widget ID.

Boolean state True to freeze, False to update the display.

Widget edit_object EditObject widget ID.

int x X value of upper left corner of the intersection rectan-
gle, in pixels.

int y Y value of upper left corner of the intersection rectan-
gle, in pixels.

int width Width of the intersection rectangle, in pixels.

int height Height of the intersection rectangle, in pixels.

int * count Returned count of objects in the list.
66 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
EditObject Functions 3

c2-edito.fm5 Page 67 Thursday, January 22, 2009 12:28 PM
XintEditObjectGetList

Returns a list of all of the objects that are children of an EditObject widget.
Object* XintEditObjectGetList (...)

If the specified EditObject widget has no Graphic objects as children, then NULL is
returned. The list returned must be freed by the application when it has finished with it.

XintEditObjectGroup

Groups selected objects into a Group object. Attributes set on a group permeate to the
group children. Groups can be nested without limit.

Object XintEditObjectGroup (Widget widget)

where widget is the ID of an EditObject widget. The function returns the ID of the new
Group object.

XintEditObjectInsert

Allows the interactive insertion of a Graphic object into a widget whose class is based
on EditObject. This function sets the resource XmNobjectEditMode to
XintEDIT_INSERT and uses actions ObjectEditStart, ObjectEdit and ObjectEditEnd.
When using the default translation table, an object is inserted interactively using
BSelect Click and BSelect Drag. MultiPoint based objects are inserted using BSelect
Click and BTransfer Click for the last point. Once the object is inserted, the original
value of resource XmNobjectEditMode is restored.

void XintEditObjectInsert (...)

Widget widget EditObject widget ID.

int * count Returned count of objects in the list.

Widget widget Specifies the ID of the EditObject widget

ObjectClass class Specifies the class of the Graphic object to be created.

ArgList arglist List of resources to be applied to Graphic object created.

Cardinal argcount Number of items in arglist.
EditTable Programming Guide 67

EDITOBJECT WIDGET CLASS
EditObject Functions3

c2-edito.fm5 Page 68 Thursday, January 22, 2009 12:28 PM
Note: Do not specify resources in arglist that have to do with the location and size
of the object to be created since those will be set by the end user. The creation of a
Graphic object does not occur until the user specifies the object interactively.
Resources specified using an address must remain allocated until the object is
created. For example, all float values that are specified should be declared static.
For the same reason, the ID of the new object is not returned by function
XintEditObjectInsert. Callback XmNinsertObjectCallback will return the ID of the
object when it is created.

XintEditObjectLower

Changes the display order of the specified object by moving it behind the object that
it was immediately in front of. If object is NULL, the function will be applied to the
currently selected object.
void XintEditObjectLower (Widget widget, Object object)

where widget is the ID of an EditObject widget and object is the ID of the object to
lower.

XintEditObjectManageResourceDialog

Manages the resource editor panel of the specific object if there is one available.
Examples of objects that have a built-in resource editor are: Text, Chart, AxisObject,
Symbol.
void XintEditObjectManageResourceDialog (...)

XintEditObjectMove

Allows the end user to move a selected object from a Move menu item. When this
function is called, the pointer is warped to the center of the selected object. As the
end user performs Drag, the object outline moves along with the pointer. A BSelect
will place the object at the current location and terminate the move operation.
void XintEditObjectMove (Widget widget)

where widget is the ID of an EditObject widget.

Widget widget EditObject widget ID.

Object object ID of the object for which to manage the dialog panel.
68 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
EditObject Functions 3

c2-edito.fm5 Page 69 Thursday, January 22, 2009 12:28 PM
XintEditObjectNew
Destroys all Graphic objects belonging to an EditObject widget.

void XintEditObjectNew (Widget widget)

widget ID of an EditObject widget.

XintEditObjectOpen
Manages a dialog box that allows the selection of a object description file. After the
file is selected, the objects will be created inside the EditObject widget specified as
argument.

void XintEditObjectOpen (Widget widget)

widget ID of an EditObject widget.

XintEditObjectPaste

Pastes all Graphic objects saved in clipboard into specified EditObject widget.
void XintEditObjectPaste (Widget widget)

widget ID of an EditObject widget.

XintEditObjectRaise
Changes the stacking order of the specified object by moving it one place up in the
display list. If argument object is set to NULL, the function will be applied to the
currently selected object.

void XintEditObjectRaise (...)

XintEditObjectReadFile
Reads an object description file and creates the objects in the specified EditObject
widget. Depending on which include file is added, this function will be redefined to
use a file loader that is “aware” of the type of file it needs to load. For instance, if
<Xint/Chart.h> is included the function is redefined to use a “Chart aware” file
loader.

void XintEditObjectReadFile (...)

Returns False if it cannot open filename or if filename does not contain a valid object
description.

Widget widget EditObject widget ID.

Object object ID of the object to raise.

Widget widget EditObject widget ID.

char * filename Name of the file containing the object description.
EditTable Programming Guide 69

EDITOBJECT WIDGET CLASS
EditObject Functions3

c2-edito.fm5 Page 70 Thursday, January 22, 2009 12:28 PM
XintEditObjectSave

Saves the Graphic objects contained in the specified EditObject widget into a file
that was previously specified in XintEditObjectOpen. Use function
XintEditObjectSaveAs or function XintEditObjectWriteFile if you want to specify a
different filename.

void XintEditObjectSave (Widget widget)

widget ID of an EditObject widget.

XintEditObjectSaveAs

Manages a dialog box that prompts for the name of a file where the Graphic objects
contained in the specified EditObject widget are saved.

void XintEditObjectSaveAs (Widget widget)

widget ID of an EditObject widget.

XintEditObjectSelectAll

Selects all the objects defined in the specified EditObject widget.
void XintEditObjectSelectAll (Widget widget)

widget ID of an EditObject widget.

XintEditObjectSelectList

Returns the list of selected Graphic objects in the specified EditObject widget.
Object * XintEditObjectSelectList (...)

The application should free the returned list using function XtFree, after it is no
longer needed, if the number of selected objects was not zero.

XintEditObjectSelectObject

Adds specified object to the list of selected objects of an EditObject widget.

void XintEditObjectSelectObject (...)

Widget widget EditObject widget ID.

int * count Number of objects returned in the list.

Widget widget EditObject widget ID.

Object object ID of the object to select.
70 EditTable Programming Guide

EDITOBJECT WIDGET CLASS
EditObject Functions 3

c2-edito.fm5 Page 71 Thursday, January 22, 2009 12:28 PM
XintEditObjectSetEditMode

Sets the value of resource XmNobjectEditMode.
void XintEditObjectSetEditMode (...)

XintEditObjectSize

Allows the end user to size a selected object from a Size menu item. When this
function is called, the pointer is warped to the center of the selected object. As the end
user moves the pointer, the new shape of the object is outlined. A BSelect Drag will
size the object as specified and a BSelect Up will terminate the operation.

void XintEditObjectSize (Widget widget)

widget ID of an EditObject widget.

XintEditObjectUngroup

Ungroups currently selected group object in the specified EditObject widget.
void XintEditObjectUngroup (Widget widget)

widget ID of an EditObject widget.

XintEditObjectWriteFile

Saves the Graphic object belonging to the specified EditObject widget into a file. The
object description file can later be read back using macro XintEditObjectReadFile.

Boolean XintEditObjectWriteFile (...)

Returns False if it failed to open the specified file.

Widget widget EditObject widget ID.

int edit_mode New value of resource XmNobjectEditMode.

Widget widget The ID of the EditObject widget.

char * filename The name of the file where the Graphic object description is
saved.

char * mode The fopen style mode indicating how to open the file.
EditTable Programming Guide 71

EDITOBJECT WIDGET CLASS
EditObject Functions3

c2-edito.fm5 Page 72 Thursday, January 22, 2009 12:28 PM
72 EditTable Programming Guide

c2-editt.fm5 Page 73 Thursday, January 22, 2009 12:29 PM
EditTable Widget 4
Overview

An EditTable widget displays a table of values (integer, string or floating point)
organized in rows and columns. A table can be manipulated by the application via
convenience functions or by the end user via actions and translations.

This chapter includes the following sections:

• Data Organization on page 74

• Using EditTable with Scroll on page 74

• Creating an EditTable Widget on page 75

• Drawing Graphics on a Table on page 80

• EditTable Resources on page 81

• EditTable Data on page 113

• EditTable Actions on page 114

• EditTable Translations on page 117

• EditTable Callbacks on page 119

• EditTable Functions on page 137
EditTable Programming Guide 73

EDITTABLE WIDGET
Data Organization4

c2-editt.fm5 Page 74 Thursday, January 22, 2009 12:29 PM
Data Organization
The data used by the EditTable widget is organized as columns of cells. Every
column in the table contains the same number of cells. Every cell in a column has
the same data type and data format.

Table Size
The table’s size at widget creation time is specified in terms its initial number of rows
and columns, but it can be changed afterwards by adding or deleting rows or
columns. The EditTable widget is designed to handle very large tables efficiently, but
the practical size of a table may be limited by the available memory.

Table Orientation
Columns in a table can be oriented vertically or horizontally. A vertical orientation
is the default orientation, but in some applications a horizontal orientation may be
useful. When the columns are oriented horizontally, the cells in a column are drawn
from left to right and the column annotation appears on the left or the right of the
column. All column and row operations are used in the same way, no matter the
column orientation.

Data Structures
The values in the cells of the table can exist only within the EditTable widget or they
can be shared by the application and the EditTable widget. There are some
restrictions on the operations that can be performed on the table data when it is
shared by the application and the widget, but the memory required to hold the table
data is minimized in this case.

Supported Data Types
The values in the cells of a column can be short integers, integers, long integers,
floating point numbers, double precision floating point numbers, character strings or
pointers.

Using EditTable with Scroll
When the EditTable widget is a child of an INT Scroll widget, the table can be
scrolled so that the table title and row/column annotation remains visible. Also, some
columns and/or rows can be frozen so that they remain visible as the rest of the table
is scrolled.
74 EditTable Programming Guide

EDITTABLE WIDGET
Displaying a Table 4

c2-editt.fm5 Page 75 Thursday, January 22, 2009 12:29 PM
Creating an EditTable Widget
An application creates an EditTable widget as a child of a container widget such as a
Bulletin Board widget, Form widget, Scrolled Window widget, or INT Scroll widget.
The number of rows and columns, along with the format of each column, are usually
specified when the EditTable widget is created. If the application has data that is to be
displayed in the table, then the application specifies that data to the EditTable widget
after the table is created (via convenience functions). During the creation process, the
application uses resources to specify callback procedures (for the table editing
operations) and general table attributes such as automatic row or column annotation,
grid line appearance, and fonts.

Displaying a Table
When the EditTable widget is mapped, it displays the data (if any) contained within
the columns of the table. If the data for a column has not been defined, then the
EditTable widget displays empty cells in that column.

Formatting Data
Formatting the data for display is based on a C format specifier that is defined for
each column. A callback, XmNformatCellCallback, can be invoked to handle non
standard formats or pointer data.

Updating a Table
When changes in the data for one or more columns in the table occur, the changes
can originate in the application or with the end user. If the application changes the
data in the shared data structures, then the application must call the function
XintEditTableUpdateDataDisplay for each column that has changed, so that the
EditTable widget can update the display of the table. The application can also
change the value in a specific cell and cause the table display to be updated by using
the function XintEditTableFillCell. If the end user changes some cell values, the
EditTable widget will update the display and the shared data structures
automatically.

Editing Operations
The EditTable widget supports a large number of editing operations. The edit operations
can be performed by the application using provided functions or by the end user via
action routines. The types of edits that can be performed are categorized as table edits,
annotation edits, column edits, row edits or cell edits.
EditTable Programming Guide 75

EDITTABLE WIDGET
Creating an EditTable Widget4

c2-editt.fm5 Page 76 Thursday, January 22, 2009 12:29 PM
Table Edit
The size of a table and other characteristics such as the table title, highlight colors, and
default column attributes can be changed via EditTable resources after the table is
created. Rows and columns may be cut, pasted, inserted or deleted via action routines
or convenience functions. Also, a range of columns or rows can be reordered by the
application using a supplied function.

Annotation Edits
Row and column annotation can be changed following table creation by using
provided functions. The application changes row and column annotation by updating
the annotation for a single row or column. Alternatively, the application can change
the annotation for all rows and all columns at one time. In either case, the application
uses provided functions. The end user can change a single row or column annotation
with an action routine. This action routine calls an application defined callback
routine that actually performs the annotation editing operation.

Column Edits
A column can be modified by changing the format of the data in the column, the
width of the column, or the number of rows in the column.

Row Edits
Because a table is column oriented, the rows must be edited indirectly by editing the
columns in the table or by editing the cells in the row.

Cell Edits
The value of a cell can be changed if the cell is in an editable column and if the
application allows the edit operation to occur. The format or data type of a cell can
only be changed by changing the format or data type of the column that the cell is in.
To edit the value in a cell, the end user must select the cell with the mouse or traverse
to it using the keyboard. If the end user enters a value after selecting the cell, then
the current value will be replaced. If the end user clicks a second time, then any new
characters typed are inserted into the current value. If the end user drags the mouse
cursor through a portion of the cell’s current value, the portion of the string selected
with the mouse will be replaced with the characters typed.
76 EditTable Programming Guide

EDITTABLE WIDGET
Input Validation 4

c2-editt.fm5 Page 77 Thursday, January 22, 2009 12:29 PM
Input Validation
You can specify a validate value callback so that a value entered into a cell can be
validated before the change is made permanent. The application can elect to allow
the change, substitute its own value or disallow the change.

Traversing the Table
The user can traverse the table by using the keyboard (e.g. tab, return, cursor keys)
or he can use the pointer to move from one location in the table to another. The
application can control the traversal via a callback so that the cursor skips over areas
of the table that are not relevant to the current application operation. The
XmNoverrideTextTranslations resource allows the user to control the action of the
Return, Left, Right, Up and Down keys to provide navigation between cells or
within a cell.

Cutting and Pasting
When row(s) or column(s) are deleted or copied, they are placed on the EditTable’s
clipboard. The clipboard can simultaneously hold columns and rows. When another
copy or delete operation occurs, then the data copied or deleted replaces the same
type of data (row or column) currently on the clipboard. Data on the clipboard can
be pasted into the table using convenience functions and action routines.

Interactive Move, Copy and Resize
A set of actions is available for performing interactive move, resize or copy
operations on rows, columns or cells. The actions that operate on cells are
EditTableStartDrag, EditTableExtendDrag and EditTableEndDrag. The drag action
EditTableStartDrag supports an argument which specifies the type of operation,
move, resize, copy or a combination of those. The actions for editing rows or
columns are AnnotationStartDrag, AnnotationExtendDrag and
AnnotationEndDrag. Row and column actions need to be registered in the EditTable
translation table if the table is not created as a child of a Scroll widget. Otherwise,
the application should use resources XmNrowAnnotationTranslations and
XmNcolumnAnnotationTranslations.
EditTable Programming Guide 77

EDITTABLE WIDGET
Creating an EditTable Widget4

c2-editt.fm5 Page 78 Thursday, January 22, 2009 12:29 PM
Frozen Columns
When the EditTable widget is a child of a Scroll widget, columns can be frozen in
the table. Frozen columns are displayed on the left or right side of the table and are
not scrolled when the table is scrolled horizontally. However, cells in a frozen
column can be selected and edited. The application uses a function to freeze as many
columns as desired. Another function is used to release a frozen column, returning it
to its former position and state.

Frozen Rows
When the EditTable widget is a child of a Scroll widget, rows can be frozen in the
table. Frozen rows are displayed above or below the table and are not scrolled when
the table is scrolled vertically. However, cells from a frozen row can be selected or
edited. The application uses a function to freeze as many rows as desired. Another
function is used to release a frozen row, returning it to its former position and state.

Cell, Column and Row Indices
The rows and columns in a table are indexed using sequential integers. The leftmost
column has an index of 1 and the topmost row has an index of 1. The cells in a table
are indexed with a pair of integers. The first integer is the index of the column
containing the cell and the second integer is the index of the row containing the cell.
When addressing a block of cells in a table, you usually specify the indices of the rows
and columns that bound the block of cells.

Column Annotation
The columns in a table can be annotated with character strings. The annotation strings
can be generated automatically as strings of letters in alphabetical order (A, B, C,..., AA,
AB, etc.) by the EditTable widget, or the application can supply a string either at column
creation time or after a column is created.

Row Annotation
The rows in a table can be annotated with any of the supported data types. The supported
data types are short, integer, long integer, floating point, double precision floating point,
and character string. However, you cannot mix data types for the row annotations. The
annotation strings can be generated automatically as sequential integers by the EditTable
widget, or the application can supply a value either at row creation time or after a row is
created.
78 EditTable Programming Guide

EDITTABLE WIDGET
Margin Size Specification 4

c2-editt.fm5 Page 79 Thursday, January 22, 2009 12:29 PM
Margin Size Specification
An EditTable widget will automatically determine the optimal size for one or more of
the margins around the scrolled child window according to the setting of the
XmNautoMarginAdjust resource. You can choose which of the margins will be
automatically sized and which will be sized according to values of the margin resources
(XmNtopMargin, XmNleftMargin, XmNrightMargin, XmNbottomMargin).
However, if an EditTable widget is a child of a Scroll widget the sizes of the (non-auto
sized) margins are set using the resources of the Scroll widget
(XmNtopAnnotationHeight, XmNleftAnnotationWidth,
XmNrightAnnotationHeight, XmNbottomAnnotationHeight).

Sub-tables
The table displayed by an EditTable is organized as one to four sub-tables, with
separate sub-tables for each of the following:

• All cells in rows and columns that are not frozen

• Cells in rows that are frozen (if any) but not including cells in frozen columns

• Cells in columns that are frozen (if any) but not including cells in frozen rows

• Cells contained in the intersection of the frozen columns and frozen rows (if
any)

You can get the widget IDs of any of these subtables using the function
XintEditTableGetSubtable.

Column and Row Visibility
The display of columns and rows of an EditTable widget can be selectively turned
on or off using functions XintEditTableChangeColumnVisibility or
XintEditTableChangeRowVisiblity. Resource XmNallowPartialCellDisplay
prevents displaying the contents of columns that are only partially visible.
EditTable Programming Guide 79

EDITTABLE WIDGET
Drawing Graphics on a Table4

c2-editt.fm5 Page 80 Thursday, January 22, 2009 12:29 PM
Drawing Graphics on a Table
Graphic objects such as text, arrows and circles can be created and edited on a table.
Those graphics can be saved to a file for retrieval for later use. Because graphic
objects can have only one parent, a graphic object cannot span more than one of the
subtables of an EditTable. For instance, a line cannot begin in the frozen row
subtable and end in the frozen column subtable. Also note that if a graphic object
spans multiple elements in a subtable (e.g. columns in the frozen column subtable)
and that element is removed from the subtable (e.g. releasing a frozen column that
one of the line end points was in) then the graphic object will be removed from the
display. However, the graphic object does still exist and will reappear when the
removed element is again placed in the subtable.

Graphic Object Coordinate System
The coordinate system used to draw INT Graphic objects inside an EditTable widget
subtable uses real numbers for both the X and Y axes. The X coordinate of a point
used to specify a Graphic object would be specified as the number of the column
containing the point followed by the decimal fraction of the column where the point
lies across the horizontal dimension of the column. For instance, to specify the X
coordinate of a point located horizontally in the middle of the 3rd column, you would
specify 3.5 as the X coordinate. Similarly, the Y coordinate of a point used to specify
a Graphic object would be specified as the number of the row containing the point
followed by the decimal fraction of the row where the point lies across the vertical
dimension of the column. For instance, to specify the Y coordinate of a point located
vertically one tenth of the cell height away from the top of a cell in the 14th row, you
would specify 14.1 as the Y coordinate.
80 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Resources 4

c2-editt.fm5 Page 81 Thursday, January 22, 2009 12:29 PM
EditTable Widget Appearance
Figure 19 shows an example of an EditTable widget as a child of an INT Scroll widget:

Figure 19. Example of EditTable as a Child of INT Scroll

EditTable Resources
This section describes the EditTable resources, as follows:

• Inherited Behavior and Resources on page 82

• Defined Resources on page 82

• Constraint Resources on page 111
EditTable Programming Guide 81

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 82 Thursday, January 22, 2009 12:29 PM
Inherited Behavior and Resources
The EditTable widget inherits behavior and resources from the Core, Composite,
Constraint, Manager, INT CompBase and EditObject classes.

• Class pointer is xintEditTableWidgetClass

• Class name is XintEditTable

• Header file is included as <Xint/EditTable.h>

Defined Resources

Defined
resources

Resources defined by the widget include the following:
• Number of rows and columns
• Grid line style and color
• Font used to display data
• Title placement

Some columns can be specified as read-only while others can be edited by the
application or end user. Color or monochrome PostScript output of the entire table
or a subset of the table is also provided. An EditTable widget can be used in
conjunction with an INT Scroll widget so that the table annotation remains visible
when the table is scrolled vertically or horizontally.

Note: Because the INT EditTable widget class is a subclass of the EditObject
widget class, it inherits the capability to draw Graphic objects on the table.

The following resources are defined by the XintEditTable widget class:

Name Default
Type Access

XmNadjustTextMaxLength False
Boolean

CSG

XmNallowPartialCellDisplay True
Boolean

CSG

XmNasciiFilename NULL
char *

CSG

XmNautoColumnRowMove True
Boolean

CSG
82 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 83 Thursday, January 22, 2009 12:29 PM
XmNautoMarginAdjust XintADJUST_NONE
int

CSG

XmNautoScrollingInterval 100
int

CSG

XmNautoTextOverflowMarker-
Size

True
Boolean

CSG

XmNautomaticColumnAnnota-
tion

True
Boolean

CSG

XmNautomaticRowAnnotation True
Boolean

CSG

XmNbottomMargin 40
int

CSG

XmNcellAttributesCallback NULL
XtCallbackList

C

XmNcellHeightData NULL
int *

CSG

XmNcellHighlightColor dynamic
Pixel

CSG

XmNcellPointerBorderThickness 3
int

CSG

XmNcellPointerColor red
Pixel

CSG

XmNcellPointerRetained True
Boolean

CSG

XmNcellSizeUnit XintUNIT_CHARACTER
int

CSG

XmNcellWidgetDisplayCallback NULL
XtCallbackList

C

XmNcellWidthData NULL
int *

CSG

XmNcheckEditModeCallback NULL
XtCallbackList

C

XmNclipAnnotation False
Boolean

CSG

XmNcolumnAlignmentData NULL
int *

CSG

Name (continued)
Default

Type Access
EditTable Programming Guide 83

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 84 Thursday, January 22, 2009 12:29 PM
XmNcolumnAnnotationData NULL
String *

CSG

XmNcolumnAnnotationFont “fixed”
char *

CSG

XmNcolumnAnnotationForeground dynamic
Pixel

CSG

XmNcolumnAnnotatioTranslations NULL
XtTranslations

CSG

XmNcolumnCallback NULL
XtCallbackList

C

XmNcolumnDataFormatData NULL
String *

CSG

XmNcolumnDataTypeData NULL
int *

CSG

XmNcolumnEditModeData NULL
int *

CSG

XmNcolumnFontIndexData NULL
int *

CSG

XmNcolumnOrientation XintCOLUMN_VERTICAL
int

CSG

XmNdefaultCellHeight 1
int

CSG

XmNdefaultCellWidth 6
int

CSG

XmNdefaultColumnAlignment XintALIGNMENT_BEGINNING_MIDDL
E

int

CSG

XmNdefaultColumnDataFormat “%s”
char *

CSG

XmNdefaultColumnDataType XintTYPE_STRING
int

CSG

XmNdefaultColumnEditMode XintCOLUMN_EDITABLE
int

CSG

XmNdoubleClickCallback NULL
XtCallbackList

C

Name (continued)
Default

Type Access
84 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 85 Thursday, January 22, 2009 12:29 PM
XmNdoubleClickInterval dynamic
int

CSG

XmNdragCallback NULL
XtCallbackList

C

XmNdragCursorType dynamic
int

CSG

XmNdragForeground black
Pixel

CSG

XmNdragGridLineStyle XintGRID_LINE_SOLID
int

CSG

XmNdragShowCellContent True
Boolean

CSG

XmNeditAnnotationCallback NULL
XtCallbackList

C

XmNfirstVisibleColumn 1
int

CSG

XmNfirstVisibleRow 1
int

CSG

XmNfontTable NULL
String *

CSG

XmNformatCellCallback NULL
XmCXtCallbackList

C

XmNformatColumnAnnotation-
Callback

NULL
XtCallbackList

C

XmNformatRowAnnotationCall-
back

NULL
XtCallbackList

C

XmNfreezeUpdate False
Boolean

CSG

XmNfrozenColumnPlacement XintPLACEMENT_LEFT
int

CSG

XmNfrozenRowPlacement XintPLACEMENT_TOP
int

CSG

XmNgridLineForeground dynamic
Pixel

CSG

XmNgridLineHighlightColor dynamic
Pixel

CSG

Name (continued)
Default

Type Access
EditTable Programming Guide 85

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 86 Thursday, January 22, 2009 12:29 PM
XmNgridLineHighlightThickness 3
int

CSG

XmNgridLineOrientation XintGRID_LINE_CROSS-WISE
int

CSG

XmNgridLineStyle XintGRID_LINE_SOLID
int

CSG

XmNgridLineWidth 1
int

CSG

XmNhorizontalAnnotationPlace-
ment

XintPLACEMENT_TOP_BOTTOM
int

CSG

XmNhorizontalCellMargin 3
int

CSG

XmNhorizontalLabel NULL
char *

CSG

XmNhorizontalLabelAlignment XintALIGNMENT_CENTER
int

CSG

XmNhorizontalLabelFont “*courier*bold-r*120*”
char *

CSG

XmNhorizontalLabelOrientation XintPARALLEL_TO_AXIS
int

CSG

XmNhorizontalLabelPlacement XintPLACEMENT_TOP_BOTTOM
int

CSG

XmNhorizontalScrollIncrement 0
int

CSG

XmNlabelForeground black
Pixel

CSG

XmNleftMargin 60
int

CSG

XmNnumberOfColumns 16
int

CSG

XmNnumberOfRows 16
int

CSG

XmNnumberOfVisibleColumns dynamic
int

CSG

XmNnumberOfVisibleRows dynamic
int

CSG

Name (continued)
Default

Type Access
86 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 87 Thursday, January 22, 2009 12:29 PM
XmNoverrideTextTranslations True
Boolean

CSG

XmNreadOnlyCellColor dynamic
Pixel

CSG

XmNreferenceChar ‘W’
char

CSG

XmNreferenceFontIndex -1
int

CSG

XmNrightMargin 60
int

CSG

XmNrowAnnotationData NULL
char **

CSG

XmNrowAnnotationDataFormat “%s”
char *

CSG

XmNrowAnnotationDataType XintTYPE_STRING
int

CSG

XmNrowAnnotationFont “fixed”
char *

CSG

XmNrowAnnotationForeground dynamic
Pixel

CSG

XmNrowAnnotationTranslations NULL
XtTranslations

CSG

XmNrowCallback NULL
XtCallbackList

C

XmNselectCellCallback NULL
XtCallbackList

C

XmNselectionScroll True
Boolean

CSG

XmNshowAnnotationGridLines False
Boolean

CSG

XmNshowTextOverflowMarker False
Boolean

CSG

XmNspanCellPointer True
Boolean

CSG

XmNspanMode XintSPAN_NONE
int

CSG

Name (continued)
Default

Type Access
EditTable Programming Guide 87

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 88 Thursday, January 22, 2009 12:29 PM
XmNtableFont “fixed”
char *

CSG

XmNtableForeground dynamic
Pixel

CSG

XmNtextOverflowMarkerColor white
Pixel

CSG

XmNtextOverflowMarkerSize 5
int

CSG

XmNtextThreeD False
Boolean

CSG

XmNtitleAlignment XintALIGNMENT_CENTER
int

CSG

XmNtitleBackground default background
Pixel

CSG

XmNtitleFont “*courier*bold-r*140*”
char *

CSG

XmNtitleForeground black
Pixel

CSG

XmNtitlePlacement XintPLACEMENT_TOP
int

CSG

XmNtitleShadowThickness 3
int

CSG

XmNtitleShadowType XintSHADOW_NONE
int

CSG

XmNtitleString NULL
char *

CSG

XmNtopMargin 70
int

CSG

XmNtraverseCellCallback NULL
XtCallbackList

C

XmNuseOriginalData False
Boolean

CG

XmNvalidateValueCallback NULL
XtCallbackList

C

XmNverticalAnnotationPlacement XintPLACEMENT_LEFT_RIGHT
int

CSG

Name (continued)
Default

Type Access
88 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 89 Thursday, January 22, 2009 12:29 PM
XmNadjustTextMaxLength
Specifies whether the EditTable widget should prevent the user from entering more
characters than the column width when editing a cell.

XmNallowPartialCellDisplay
Specifies whether or not the contents of partially visible columns are displayed.

XmNasciiFilename
Specifies the name of an ASCII file that provides input to the EditTable widget.
EditTable will automatically convert the values in the file to the column format. If
a conversion fails, the cell will be left unchanged. Also, the EditTable widget will
be automatically resized to the size of the dataset contained in the file. Refer to
“XintEditTableReadAscii” on page 175 for more information on the file format.

XmNautoColumnRowMove
Specifies whether to shift column/row automatically when inserting a column/row
before the first visible column/row.

XmNverticalCellMargin 3
int

CSG

XmNverticalLabel NULL
char *

CSG

XmNverticalLabelAlignment XintALIGNMENT_CENTER
int

CSG

XmNverticalLabelFont “*courier*bold-r*120*”
char *

CSG

XmNverticalLabelOrientation XintPARALLEL_TO_AXIS
int

CSG

XmNverticalLabelPlacement XintPLACEMENT_LEFT_RIGHT
int

CSG

XmNverticalScrollIncrement 0
int

CSG

Name (continued)
Default

Type Access
EditTable Programming Guide 89

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 90 Thursday, January 22, 2009 12:29 PM
XmNautoMarginAdjust
Specifies which of the values of the margin resources (XmNtopMargin,
XmNbottomMargin, XmNleftMargin and XmNrightMargin) are automatically
determined by the widget. This resource is inherited from class XintCompBase. You
can specify one of the following constants:

Alternatively, you can specify a combination of the constants by using a logical OR
operation or an arithmetic addition operation. For instance, to have the left and right
margin sized automatically and the top and bottom margin sized as specified with
the XmNtop and XmNbottom resources, you would set XmNautoMarginAdjust
to XintADJUST_LEFT | XintADJUST_RIGHT or XintADJUST_LEFT +
XintADJUST_RIGHT.

This resource has no effect unless the EditTable is the child of an INT Scroll widget.

XmNautoScrollingInterval
Specifies the scrolling interval, in millisecond, when dragging a cell/column/row
outside the visible Table window.

XmNautoTextOverflowMarkerSize
Specifies whether to adjust the size of the text overflow marker automatically when
resizing a cell.

XmNautomaticColumnAnnotation
Specifies whether the widget will automatically annotate each column when it is
created and displayed. The default value is True, indicating that the columns will be
automatically annotated when displayed using the series of labels: A, B, C,...,Z, AA,
AB,...,etc.

Defined Constant Description

XintADJUST_ALL All margins will be automatically computed by the widget.

XintADJUST_NONE
(default)

None of the margins will be automatically computed by the
widget.

XintADJUST_LEFT The left margin will be automatically computed by the wid-
get.

XintADJUST_RIGHT The right margin will be automatically computed by the
widget.

XintADJUST_TOP The top margin will be automatically computed by the wid-
get.

XintADJUST_BOTTOM The bottom margin will be automatically computed by the
widget.
90 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 91 Thursday, January 22, 2009 12:29 PM
This resource must be set to False if the XmNcolumnAnnotationData resource is
specified.

XmNautomaticRowAnnotation
Specifies whether the widget will automatically annotate each row when it is created
and displayed. The default value is True, indicating that the rows will be
automatically annotated using sequential integers beginning at 1.

XmNbottomMargin
Specifies the space, in pixel units, to allocate for the bottom column annotation area.
This resource is calculated automatically if resource XmNautoMarginAdjust is set
to XintADJUST_ALL or XintADJUST_BOTTOM.

XmNcellAttributesCallback
Specifies the callback that is called just before the cell is drawn. This callback
allows the programmer to change the cell attributes, such as background,
foreground, alignment, and font table index of a cell dynamically. The constant
values available for attribute alignment are listed below in resource
XmNcolumnAlignmentData. This callback will be called for every visible cell in
the table.

XmNcellHeightData
Specifies an integer array, as large as the number of rows (or columns if the table is
transposed), which defines the height of each row in the unit system specified by
resource XmNcellSizeUnit. If resource XmNcellHeightData is not specified
(NULL), the height of all the rows in the table will be set to the size specified in
resource XmNdefaultCellHeight.

XmNcellHighlightColor
Specifies the color used to draw the background of one or of a group of selected
cells.

XmNcellPointerBorderThickness
Specifies the thickness of the cell pointer in pixel units. The cell pointer is a
rectangle drawn around the cell that is being edited.

XmNcellPointerColor
Specifies the color of the cell pointer rectangle.

XmNcellPointerRetained
Specifies whether the cell pointer is kept or not when the table loses focus.
EditTable Programming Guide 91

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 92 Thursday, January 22, 2009 12:29 PM
XmNcellSizeUnit
Specifies the unit system used to specify the size of a cell. Specify
XintUNIT_CHARACTER (default) to have the cell size in character units or
XintUNIT_PIXEL to have the cell size in pixels.

XmNcellWidgetDisplayCallback
Specifies the list of callbacks that is called just before a ‘widget in a cell’ is drawn
or mapped to a cell. ‘Widget in a cell’ is the mechanism that permits a single widget
to be used across a range of cells in the edit table. These callbacks allow the
application to query data and to configure the inserted widget with the proper
resources before it is drawn to the current cell location. This callback is used
whenever XmNcellWidgetSetResources is False, or when the widget requires more
or different resources.

XmNcellWidthData
Specifies an integer array, as large as the number of columns (or rows if the table is
transposed), which defines the width of each column in the unit system defined by
resource XmNcellSizeUnit. If resource XmNcellWidthData is not specified
(NULL), the width of all the columns in the table will be set to the size specified in
resource XmNdefaultCellWidth.

XmNcheckEditModeCallback
Specifies the list of callbacks that is called when the end user has selected a cell for
editing by using the action EditTableEditCell().

XmNclipAnnotation
Specifies whether the annotation will be clipped if the annotation string is wider than
the annotation area. If the column orientation is vertical, then clipping will occur
only for the column annotation. If the column orientation is horizontal, then clipping
will occur only for the row annotation. The default value for this resource is False,
indicating that the annotation will not be clipped, but rather the width of the column
will be increased to accommodate the width of the annotation. If you set this resource
to True, then the annotation will be clipped and the column width will not be
changed.
92 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 93 Thursday, January 22, 2009 12:29 PM
XmNcolumnAlignmentData
Specifies an array (of size XmNnumberOfColumns) containing the alignment
specifications for each column. Use the defined integer constants listed below for
specifying the alignment.

Use the function XintEditTableDefineColumnFormat or the resource
XmNdefaultColumnAlignment to set the alignment of a column. If you set the
resource XmNcolumnAlignmentData using a resource file, specify a list of values
consisting of the defined constants (in the table above) separating the values with
commas.

Resource Value Description

XintALIGNMENT_BEGINNING_TOP The value in each cell of the column is to be
justified in the upper left hand corner of the
cell.

XintALIGNMENT_CENTER_TOP The value in each cell of the column is to be
justified horizontally in the center of the cell
and vertically at the top of the cell.

XintALIGNMENT_END_TOP The value in each cell of the column is to be
justified in the upper right hand corner of the
cell.

XintALIGNMENT_BEGINNING_MIDDLE
(default)

The value in each cell of the column is to be justi-
fied horizontally at the left side of the cell and ver-
tically in the center of the cell.

XintALIGNMENT_CENTER_MIDDLE The value in each cell of the column is to be jus-
tified horizontally at the center of the cell and
vertically in the center of the cell.

XintALIGNMENT_END_MIDDLE The value in each cell of the column is to be justi-
fied horizontally at the right side of the cell and
vertically in the center of the cell.

XintALIGNMENT_BEGINNING_BOTTOM The value in each cell of the column is to be
justified in the lower left hand corner of the
cell.

XintALIGNMENT_CENTER_BOTTOM The value in each cell of the column is to be just-
fied horizontally in the center of the cell and ver-
tically at the bottom of the cell.

XintALIGNMENT_END_BOTTOM The value in each cell of the column is to be
justified in the lower right hand corner of the
cell.
EditTable Programming Guide 93

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 94 Thursday, January 22, 2009 12:29 PM
XmNcolumnAnnotationData
Specifies the character strings to use for annotating the columns in the table. You set
this resource’s value by specifying a pointer to an array of pointers, each of which
refers to a character string containing a column annotation. If a value is specified for
this resource then the EditTable widget will make its own copy of the column
annotations from the array at its creation time, regardless of the setting of the value
of the resource XmNuseOriginalData. If this resource is set from a resource file,
use commas to separate the strings. The number of strings must be equal to the
number of columns defined by XmNnumberOfColumns.

If this resource is specified, the XmNautomaticColumnAnnotation resource must
be set to False.

XmNcolumnAnnotationFont
Specifies the font used to draw the column annotations.

XmNcolumnAnnotationForeground
Specifies the foreground color used for column annotations.

XmNcolumnAnnotationTranslations
Specifies a (parsed) translation table defining the translations for the annotation
action routines. Use this resource only when the parent of EditTable widget is an INT
Scroll widget. When the parent of the EditTable widget is not an INT Scroll widget,
then register these translations with the EditTable widget with an
XtAugmentTranslations or an XtOverrideTranslations function.

XmNcolumnCallback
Specifies the list of callbacks that is called when the end user has executed any
column operation action routine (such as column select, insert or delete).

XmNcolumnDataFormatData
Specifies an array (of size XmNnumberOfColumns) containing strings specifying
the display format for each column. The display format is specified using C format
descriptors such as “%f”. The format descriptor must be compatible with the data
type for that column. If you need to display a column of data using a non standard
format, set the format descriptor to NULL and register callback
XmNformatCellCallback.

Also, for columns whose data type is set to pointer, the format descriptor will be
ignored and callback XmNformatCellCallback will be called. The display format of
a column can also be specified using function XintEditTableDefineColumnFormat.
If you set this resource from a resource file, separate the format strings by commas.
94 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 95 Thursday, January 22, 2009 12:29 PM
XmNcolumnDataTypeData
Specifies an array of size XmNnumberOfColumns containing integer values
specifying the data type for each column of the table. Use the constants listed below
for specifying the data type.

The data type of a column can also be specified using function
XintEditTableDefineColumnFormat or resource XmNdefaultColumnDataType.
If you set resource XmNcolumnDataTypeData from a resource file, use the string
names or integer values listed in the table above. Multiple values must be separated
by commas.

XmNcolumnEditModeData
Specifies an array of size XmNnumberOfColumns containing integer values
specifying the edit mode for each column of the table. Specify
XintCOLUMN_EDITABLE if you want the cells of a column to be editable or
XintCOLUMN_NON_EDITABLE if you want the cells of a column to be non
editable. The edit mode of a column can also be set using resource
XmNdefaultColumnEditMode. Refer to t“XmNcheckEditModeCallback” on
page 92 for more information about selectively enabling or disabling the edit mode of a
cell. When specifying this resource via a resource file, place commas between the
elements of the list.

XmNcolumnFontIndexData
Specifies an array of size XmNnumberOfColumns containing integer values
specifying the font index to use for each column of the table. Resource
XmNfontTable specifies a list of X fonts that can be used for displaying the cell
contents. The index value corresponds to an entry in that table. Specify -1 for
columns that use the default font specified in XmNtableFont. Use function
XintEditTableSetCellFont to specify fonts on a cell-by-cell basis.

Resource Value Description

XintTYPE_SHORT Specifies short integer data type.

XintTYPE_INTEGER Specifies integer data type.

XintTYPE_LONG Specifies long integer data type.

XintTYPE_FLOAT Specifies floating point data type.

XintTYPE_DOUBLE Specifies double precision floating point data type.

XintTYPE_STRING (default) Specifies character string data type.

XintTYPE_POINTER Specifies the pointer data type.
EditTable Programming Guide 95

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 96 Thursday, January 22, 2009 12:29 PM
XmNcolumnOrientation
Specifies whether the columns are oriented horizontally across the page or vertically
down the page. The default is vertical orientation specified by
XintCOLUMN_VERTICAL. Specify XintCOLUMN_HORIZONTAL for
horizontal orientation.

XmNdefaultCellHeight
Specifies the default height of a cell in the unit system defined by resource
XmNcellSizeUnit. Specify a positive integer as the value of this resource.
Alternatively, if you specify the integer 0 as the value of this resource, the EditTable
widget will compute the height of each row as the maximum number of lines of text
in any character string formatted cell in that row (can be quite slow for big tables).

XmNdefaultCellWidth
Specifies the default width of a cell in the unit system defined by resource
XmNcellSizeUnit. If you specify the integer 0 as the value of this resource, the
EditTable widget will compute the width of each column as the maximum number
of characters in any character string formatted cell in that column.You can change
the width of a column using the function XintEditTableDefineColumnFormat or use
resource XmNcellWidthData to set the width of all the columns in the table.

XmNdefaultColumnAlignment
Specifies the alignment of the cell contents for newly created columns. Refer to
“XmNcolumnAlignmentData” on page 93 for a list of defined constants used to
specify the value of this resource.

XmNdefaultColumnDataFormat
Specifies the default display format for the cells in the table. Specify the format value
as any C format descriptor (such as %s, %d, %f) that corresponds to the data type
specified by the value of the resource XmNdefaultColumnDataType. Specify
NULL if you want to handle the formatting of the data yourself using callback
XmNformatCellCallback.

XmNdefaultColumnDataType
Specifies the data type of the values of the cells in a column that will be used when
a new column is created. You can specify one of the following defined constants:

Resource Value Description

XintTYPE_SHORT Specifies short integer data type.

XintTYPE_INTEGER Specifies integer data type.

XintTYPE_LONG Specifies long integer data type.
96 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 97 Thursday, January 22, 2009 12:29 PM
XmNdefaultColumnEditMode
Specifies the edit mode for newly created columns. The default value for this
resource is XintCOLUMN_EDITABLE indicating that the values in a newly
created column can be edited by the end user. Specify the constant
XintCOLUMN_NON_EDITABLE if you want to prohibit end-user editing in
newly created columns.

XmNdoubleClickCallback
Specifies a list of callbacks that is called when the end user performs a double-click
operation on a cell. The callback structure is
XintEditTableDoubleClickCallbackStruct and the reason is
XintCR_DOUBLE_CLICK.

XmNdoubleClickInterval
Specifies the maximum interval, in milliseconds, between which two button clicks
are considered to be a double-click action rather than two single-click actions. The
default is the value returned by function XtGetMultiClickTime.

XmNdragCallback
Specifies the list of callbacks that is called when the end user performs a move,
resize or copy operation on a cell, row or column.

XmNdragCursorType
Specifies the cursor type to use when performing an interactive copy, move or resize
operation on a row, column or cell.

XmNdragForeground
Specifies the color, as a pixel value, used to draw the outline of a row, column or
cell while performing an interactive copy, move or resize operation.

XintTYPE_FLOAT Specifies floating point data type.

XintTYPE_DOUBLE Specifies double precision data type.

XintTYPE_STRING (default) Specifies character string data type.

XintTYPE_POINTER Specifies pointer data type.

XintTYPE_NONE Indicates that no data is to be managed by EditTable.

Resource Value Description
EditTable Programming Guide 97

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 98 Thursday, January 22, 2009 12:29 PM
XmNdragGridLineStyle
Specifies the style used to draw the outline of a row, column or cell while performing
an interactive copy, move or resize operation. Use one of the following defined
constants when specifying a value for this resource:

XmNdragShowCellContent
Specifies whether the cell values should be displayed, along with the outline, while
performing an interactive copy, move or resize operation on a row, column or cell.

XmNeditAnnotationCallback
Specifies the list of callbacks that is called when the end user has selected a row or
column annotation for editing via the action AnnotationEdit().

XmNfirstVisibleColumn
Specifies the first column to display when the table is created.

XmNfirstVisibleRow
Specifies the first row to display when the table is created.

Resource Value Description

XintGRID_LINE_SOLID (default) The outline is drawn using a solid line.

XintGRID_LINE_DASHED The outline is drawn using a dashed line.

XintGRID_LINE_DOUBLE_DASHED The outline is drawn using a double dashed
line.

XintGRID_LINE_NONE No outline is drawn.
98 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 99 Thursday, January 22, 2009 12:29 PM
XmNfontTable
Specifies a NULL terminated list of X font names that can be used for setting fonts
for individual cells, rows or columns. Once this table is defined, fonts can be
assigned with resource XmNcolumnFontIndexData or functions
XintEditTableSetCellFont, XintEditTableSetColumnFont and
XintEditTableSetRowFont. Specify NULL if you want the whole table to use the
font specified in XmNtableFont.

XmNformatCellCallback
Specifies the list of callbacks that can be used to format the data before display. This
callback is invoked when the format specifier for a column is set to NULL or the
data type for a column is XintTYPE_POINTER.

XmNformatColumnAnnotationCallback
Specifies the list of callbacks that can be used to input the column annotation before
display. This resource will have no effect if XmNautomaticColumnAnnotation is
True.

XmNformatRowAnnotationCallback
Specifies the list of callbacks that can be used to input the row annotation before
display. This resource will have no effect if XmNautomaticRowAnnotation is
True.

XmNfreezeUpdate
This resource can be used to temporarily disable (True) any geometry update and
redrawing before performing a series of changes on an EditTable widget. The
resource value should be set back to False after the changes are made so that the
table can automatically calculate its new geometry and redisplay itself.

XmNfrozenColumnPlacement
Specifies the placement of a frozen column. Specify XintPLACEMENT_LEFT or
XintPLACEMENT_RIGHT if the columns are oriented vertically. Specify
XintPLACEMENT_TOP or XintPLACEMENT_BOTTOM if the columns are
orientated horizontally.

XmNfrozenRowPlacement
Specifies the placement of a frozen row. Specify XintPLACEMENT_TOP or
XintPLACEMENT_BOTTOM if the rows are oriented horizontally. Specify
XintPLACEMENT_LEFT or XintPLACEMENT_RIGHT if the rows are orientated
vertically.
EditTable Programming Guide 99

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 100 Thursday, January 22, 2009 12:29 PM
XmNgridLineForeground
Specifies foreground color used to draw grid lines when grid line style is set to solid
or dashed.

XmNgridLineHighlightColor
Specifies color used for the grid lines that outline a block of selected cells.

XmNgridLineHighlightThickness
Specifies width (in pixels) of the highlight border drawn around one cell or a group
of cells when they are selected. The thickness defined using this resource will be
restricted to be at most half of the grid line width specified in resource
XmNgridLineWidth. Use XmNgridLinelHighlightColor to define the color for
the highlight border.

XmNgridLineOrientation
Specifies the orientation of grid lines.Use one of the following defined constants
when specifying a value for this resource:

XmNgridLineStyle
Specifies line style used to display grid lines separating cells in the table. Use one of
the following constants when specifying a value for this resource:

Resource Value Description

XintGRID_LINE_CROSSWISE (default) Grid lines are drawn to separate rows and col-
umns.

XintGRID_LINE_COLUMNWISE Grid lines are drawn between columns only.

XintGRID_LINE_ROWWISE Grid lines are drawn between rows only.

Resource Value Description

XintGRID_LINE_SOLID (default) Cells in table will be separated by solid line.

XintGRID_LINE_DASHED Cells in table will be separated by dashed line.

XintGRID_LINE_DOUBLE_DASHED Cells in table will be separated by double dashed
line.

XintGRID_LINE_SHADOW_IN Cells in table will have a shadow border that goes
into the screen.

XintGRID_LINE_SHADOW_OUT Cells in table will have a shadow border that goes
out of the screen.
100 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 101 Thursday, January 22, 2009 12:29 PM
XmNgridLineWidth
Specifies width (in pixels) of the grid lines drawn between the cells in a table.

XmNhorizontalAnnotationPlacement
Specifies placement of horizontal annotation. You can use the following constants:

XmNhorizontalCellMargin
Specifies the width (in pixels) of the margin between the left side of a cell’s value
and the left side of the cell. The same value is used for the margin between the right
side of a cell’s value and the right side of the cell.

XmNhorizontalLabel
Specifies a single or multiple line string that provides labelling for the horizontal
annotation. The label placement is controlled by the resource
XmNhorizontalLabelPlacement.

XmNhorizontalLabelAlignment
Specifies the alignment of each line of the horizontal label. Multiple lines can be
specified by inserting the special character ‘\n’ between each line in the label string.
Label lines are adjusted in respect to the horizontal label area, which is the same
width as the widget’s display area. You can specify one of the following constants:

Defined Constant Description

XintPLACEMENT_NONE No horizontal annotation displayed.

XintPLACEMENT_TOP Horizontal annotation is displayed above the
table.

XintPLACEMENT_BOTTOM Horizontal annotation is displayed below the
table.

XintPLACEMENT_TOP_BOTTOM Horizontal annotation is displayed both above
and below the table.

Defined Constant Description

XintALIGNMENT_BEGINNING Lines of the label are left aligned.

XintALIGNMENT_CENTER Lines of the label are centered.

XintALIGNMENT_END Lines of the label are right aligned.
EditTable Programming Guide 101

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 102 Thursday, January 22, 2009 12:29 PM
XmNhorizontalLabelFont
Specifies the name of a font used to draw the horizontal label specified by resource
XmNhorizontalLabel.

XmNhorizontalLabelOrientation
Specifies the orientation of the label string. Specify constant
XintPARALLEL_TO_AXIS (default) to have the label placed along the horizontal
axis, or specify constant XintSTACKED to have the letters of the label stacked
vertically.

XmNhorizontalLabelPlacement
Specifies the placement of the horizontal label. You can specify one of the following
constants:

XmNhorizontalScrollIncrement
Specifies the number of pixels the EditTable widget will scroll horizontally when the
left or right scrollbar arrow is pressed. Specify 0 (default) to have the EditTable
scroll an entire cell width.

XmNlabelForeground
Specifies the pixel used to draw the horizontal and vertical labels.

XmNleftMargin
Specifies the space, in pixels units, to allocate for the left row annotation area. This
resource is calculated automatically if resource XmNautoMarginAdjust is set to
XintADJUST_ALL or XintADJUST_LEFT.

XmNnumberOfColumns
Specifies the number of columns in the table.

XmNnumberOfRows
Specifies the number of rows in the table.

Defined Constant Description

XintPLACEMENT_TOP The horizontal label is drawn above the wid-
get’s display area

XintPLACEMENT_BOTTOM The horizontal label is drawn below the wid-
get’s display area.

XintPLACEMENT_TOP_BOTTOM The horizontal label is drawn both above and
below the widget’s display area.
102 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 103 Thursday, January 22, 2009 12:29 PM
XmNnumberOfVisibleColumns
Specifies how many columns should be visible (size of the viewport), when the
EditTable widget is created as a child of a INT Scroll widget. Specify 0 (default) to
have all the columns in the table visible. This resource takes effect only if parent
scroll resource XmNhorizontalAutoSized is set to True.

XmNnumberOfVisibleRows
Specifies how many rows should be visible (size of the viewport), when the
EditTable widget is created as a child of a INT Scroll widget. Specify 0 (default) to
have all the rows in the table visible. This resource will take effect only if the parent
scroll resource XmNverticalAutoSized is set to True.

XmNoverrideTextTranslations
Specifies if the table overrides the text translations for the Return, Left, Right, Up
and Down keys, so that they can be used to navigate between cells inside the table.
This resource is usually set to True. Set it to False to be able to edit multiline text in
a cell.

XmNreadOnlyCellColor
Specifies the default background color of the cells in a non editable column.

XmNreferenceChar
Specifies the character whose width is used to compute the width of a column that
is displaying string data. This resource is only used when fonts containing characters
of different widths are used (proportional fonts).

XmNreferenceFontIndex
Specifies an index corresponding to an entry in the font table (specified in resource
XmNfontTable) that is used to calculate the dimension of each column in the table.
This resource only applies if resource XmNfontTable is not NULL and should be
usually set to the index corresponding to the largest font. The default value for this
resource is -1, which means that the table will calculate the size of each column
based on the font used by each cell. This process can be slow for large tables.

XmNrightMargin
Specifies the space, in pixels units, allocated for the right row annotation area. This
resource is calculated automatically if resource XmNautoMarginAdjust is set to
XintADJUST_ALL or XintADJUST_RIGHT.
EditTable Programming Guide 103

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 104 Thursday, January 22, 2009 12:29 PM
XmNrowAnnotationData
Specifies the values to use for annotating the rows in the table. You set this
resource’s value by specifying a pointer to an array containing the row annotation
values. The row annotation can be any of the supported data types for cell data. If a
value is specified for this resource then the EditTable widget will make its own copy
of the row annotations in the array at widget creation time regardless of the setting
of the value of the resource XmNuseOriginalData. The number of values in the
array must be equal to the number of rows defined by the XmNnumberOfRows
resource.

XmNrowAnnotationDataFormat
Specifies the format of the values used for the row annotation. You specify the value
as any C format descriptor (such as %s, %d, %f) that corresponds to the data type
specified by the value of the resource XmNrowAnnotationDataType.

XmNrowAnnotationDataType
Specifies the data type of the values used for row annotation. You can specify one
of the following defined constants:

XmNrowAnnotationFont
Specifies the font used to draw the row annotations.

XmNrowAnnotationForeground
Specifies the foreground color used for row annotations.

Resource Value Description

XintTYPE_SHORT Specifies short integer data type.

XintTYPE_INTEGER
(default)

Specifies integer data type.

XintTYPE_LONG Specifies long integer data type.

XintTYPE_FLOAT Specifies floating point data type.

XintTYPE_DOUBLE Specifies double precision floating point data type.

XintTYPE_STRING Specifies character string data type.
104 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 105 Thursday, January 22, 2009 12:29 PM
XmNrowAnnotationTranslations
Specifies the parsed translation table defining the translations for the row annotation
action routines. Use this resource only when the parent of EditTable widget is an
INT Scroll widget. When the parent of the EditTable widget is not an INT Scroll
widget, then do not define the row annotation translations using this resource, but
include those translations in a translation table registered with the EditTable widget
by using an XtAddTranslations call.

XmNrowCallback
Specifies the list of callbacks that is called when the end user has executed any row
operation action routine (e.g. row select, insert or delete).

XmNselectCellCallback
Specifies the list of callbacks that is called when the end user has selected a cell
using any cell selection action routine (such as EditTableEndSelect).

XmNselectionScroll
Specifies whether the EditTable will automatically scroll to show the area that has
been selected via the selection convenience function XintEditTableSetSelection.

XmNshowAnnotationGridLines
Specifies whether grid lines should be drawn in the annotation area.

XmNshowTextOverflowMarker
Specifies whether to show the text overflow marker when the width /height of a cell
is less than the actual dimensions of the displayed text.

XmNspanCellPointer
Specifies whether or not the cell pointer will treat spanned cell row/column
locations as a single location and skip the individual locations that have been
overlapped by the span. If True (the default), the cell pointer will skip overlapped
locations and treat the cell as a single location. If False, the cell pointer will visit
every row/column location, regardless of whether or not that location is spanned.

XmNspanMode
Specifies whether or not cell spanning is enabled. XmNspanMode must be
specified as one of the following constants.

Defined Constant Description

XintSPAN_NONE Spanning is not enabled (the default).

XintSPAN_ALWAYS Spanning is enforced.
EditTable Programming Guide 105

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 106 Thursday, January 22, 2009 12:29 PM
XmNtableFont
Specifies the font used to draw the values of all cells in the table.

XmNtableForeground
Specifies the color (as a pixel value) used when displaying the values of the cells in
the table.

XmNtextOverflowMarkerColor
Specifies the color (pixel), of the text overflow marker. The color white is the default
color.

XmNtextOverflowMarkerSize
Specifies the size of the text overflow marker, in pixel units. The default size is 5
pixels wide.

XmNtextThreeD
Specifies whether the widget’s labels and title are drawn with a shadow, so that they
have a 3-dimensional appearance. The default is False, indicating that they will not
appear 3-dimensional.

XintSPAN_DATA_ONLY Cells with data are drawn according to their
span factor. Empty cells, regardless of their
span, are drawn at 1x1.

XintSPAN_DATA_AND_EMPTY Cells are drawn according to their span factor,
regardless of whether or not they have data.

Defined Constant Description
106 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 107 Thursday, January 22, 2009 12:29 PM
XmNtitleAlignment
Specifies the alignment of the lines of the title if it has more than one line. Multiple
lines can be specified by inserting special character ‘\n’ between lines in the title
string. You can specify one of the following constants:

XmNtitleBackground
Specifies the pixel value used to draw the background of the title.

XmNtitleFont
Specifies the name of the font used to draw the title.

XmNtitleForeground
Specifies the pixel value used to draw the foreground of the title.

XmNtitlePlacement
Specifies the placement of the title string. Specify one of the following constants:

XmNtitleShadowThickness
Specifies the thickness of the title shadow in pixels if resource
XmNtitleShadowType is not set to XintSHADOW_NONE.

XmNtitleShadowType
Specifies the type of shadow to draw around the title. You can specify one of the
following constants:

Defined Constant Description

XintALIGNMENT_BEGINNING Lines of the title are left adjusted.

XintALIGNMENT_CENTER Lines of the title are centered.

XintALIGNMENT_END Lines of the title are right adjusted.

Defined Constant Description

XintPLACEMENT_NONE The title is not drawn.

XintPLACEMENT_TOP (default) The title is drawn above the widget’s window.

XintPLACEMENT_BOTTOM The title is drawn at the bottom of the widget’s
window.

Defined Constant Description

XintSHADOW_NONE No shadow is drawn.
EditTable Programming Guide 107

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 108 Thursday, January 22, 2009 12:29 PM
XmNtitleString
Specifies the string used to draw the title. The color, font and location of the title
string can be specified using resources XmNtitleFont, XmNtitleForeground and
XmNtitlePlacement.

XmNtopMargin
Specifies the space, in pixels units, reserved for the top column annotation area. This
resource is automatically calculated by the widget when the value of the resource
XmNautoMarginAdjust is XintADJUST_ALL or XintADJUST_TOP.

XmNtraverseCellCallback
Specifies the list of callbacks that is called when the end-user has executed the
EditTableEnterCell() action routine.

XmNuseOriginalData
Indicates whether the EditTable widget should use the application’s table data or
whether the EditTable widget should create a copy of the application’s table data.
The default is False, indicating that the EditTable widget should make its own copies
of the application’s table data. Table data includes the values of all cells in the table.

If you set this resource to True, insertion and deletion of rows (or columns if the table
is transposed) will be disabled because it is not possible for the table to reallocate
your data. When resource XmNuseOriginalData is True, you should use function
XintEditTableFillColumnData to fill the table.

Note: This resource can only be set at creation time.

XmNvalidateValueCallback
Specifies the list of callbacks to be called so that the application can validate the
input when the end user has changed the value of a cell.

XintSHADOW_IN Shadow drawn so that title appears inset.

XintSHADOW_OUT Shadow drawn so that tile appears outset.

XintSHADOW_ETCHED_IN Shadow drawn using a double line inset.

XintSHADOW_ETCHED_OUT Shadow drawn using a double line outset.

Defined Constant Description
108 EditTable Programming Guide

EDITTABLE WIDGET
Defined Resources 4

c2-editt.fm5 Page 109 Thursday, January 22, 2009 12:29 PM
XmNverticalAnnotationPlacement
Specifies placement of vertical annotation, using the following constants:

XmNverticalCellMargin
Specifies height (in pixels) of margin between top edge of cell’s value and top edge
of the cell. The same value is used for the margin between the bottom edge of a cell’s
value and the bottom edge of the cell.

XmNverticalLabel
Specifies single or multiple line string that provides labelling for the vertical
annotation. Label placement controlled by XmNverticalLabelPlacement.

Defined Constant Description

XintPLACEMENT_NONE No vertical annotation displayed.

XintPLACEMENT_RIGHT Vertical annotation is displayed to the right
of the table.

XintPLACEMENT_LEFT Vertical annotation is displayed to the left of
the table.

XintPLACEMENT_LEFT_RIGHT (default) Vertical annotation is displayed both left
and right of the table.
EditTable Programming Guide 109

EDITTABLE WIDGET
EditTable Resources4

c2-editt.fm5 Page 110 Thursday, January 22, 2009 12:29 PM
XmNverticalLabelAlignment
Specifies alignment of each line of the vertical label. Specify multiple lines by
inserting special character ‘\n’ between lines in the label string. Label lines are
adjusted with respect to vertical label area, which is the same height as the widget’s
display area. For a vertical label, beginning alignment indicates lines justified to top
of the widget’s display area and continue downward. End alignment indicates lines
justified to bottom of the widget’s display area and continue upward. Specify with
one of the following constants:

XmNverticalLabelFont
Specifies the name of a font used to draw the vertical label specified by the resource
XmNverticalLabel.

XmNverticalLabelOrientation
Specifies orientation of label string. Specify constant XintPARALLEL_TO_AXIS To
rotate the label 90 degrees from horizontal and place it along the vertical axis. Specify
constant XintSTACKED to stack the letters of the label vertically.

XmNverticalLabelPlacement
Specifies placement of vertical label, according to the following constants:

XmNverticalScrollIncrement
Specifies the number of pixels the EditTable widget will scroll vertically when the
up or down scrollbar arrow is pressed. Specify 0 (default) to have the EditTable
scroll an entire cell height.

Defined Constant Description

XintALIGNMENT_BEGINNING Lines of the label are aligned with the top of the widget’s
display area.

XintALIGNMENT_CENTER Lines of the label are centered.

XintALIGNMENT_END Lines of the label are aligned with the bottom of the
widget’s display area.

Defined Constant Description

XintPLACEMENT_LEFT Vertical label drawn left of widget’s display area.

XintPLACEMENT_RIGHT Vertical label drawn right of widget’s display area.

XintPLACEMENT_LEFT_RIGHT Vertical label drawn both left and right of widget’s dis-
play area.
110 EditTable Programming Guide

EDITTABLE WIDGET
Constraint Resources 4

c2-editt.fm5 Page 111 Thursday, January 22, 2009 12:29 PM
Constraint Resources
The following constraint resources can be specified on a widget inserted in an
EditTable widget. They specify the range of cells into which the widget will be
inserted and whether or not some resources will be automatically applied when the
widget is mapped to a cell.

XmNcellWidgetRange
Specifies the range of EditTable cells that will contain the designated widget. This
resource is a pointer to a structure as shown below.

typedef struct {
int row, rows, column, columns;
} XintCellWidgetRange;

where the structure variables are:

Name Default
Type Access

XmNcellWidgetRange NULL
XintCellWidgetRange *

CSG

XmNcellWidgetSetResources True
Boolean

CSG

XmNcellWidgetOverrideTranslations True
Boolean

CSG

Member Description

row Starting row in the range of cells that contain the widget.

rows Number of rows in the range of cells that contain the widget.
 0 = all rows in the table, beginning with the starting row.

column Starting column in the range of cells that contain the widget.

columns Number of columns in the range of cells that contain the widget.
 0 = all columns in the table, beginning with the starting column.
EditTable Programming Guide 111

EDITTABLE WIDGET
Widget in a Cell Example4

c2-editt.fm5 Page 112 Thursday, January 22, 2009 12:29 PM
XmNcellWidgetSetResources
Specifies whether or not the EditTable will automatically set a number of cell
resources for the most common Motif widgets to the values shown below.

Before calling XmNcellWidgetDisplayCallback, set XmNcellWidgetSetResources. If set
to False, and XmNcellWidgetDisplayCallback is omitted, the visual characteristics
of the cells will be undefined.

XmNcellWidgetOverrideTranslations
Specifies whether or not to change or replace the translations of the widget in a cell
so that arrows and tab keys take you back to the table process rather than the focus
remaining in the mapped widget.

Widget in a Cell Example
The following code fragment illustrates the ease of installing Widget In A Cell and
setting its resources. Since XmNcellWidgetSetResources is True by default, the
cell values will be set automatically.

Code /*
 * Create the edit table
 */
edit_table = XtCreateManagedWidget(“edit_table”,
 xintEditTableWidgetClass, scroll, arg, n);

/*
 * Put a widget into cells that span 400 rows and 2 columns
 */
range.row = 1;
range.rows = 400;
range.column = 1;
range.columns = 2;
XtVaCreateWidget(“pushb”, xmPushButtonWidgetClass,
 edit_table, XmNcellWidgetRange, &range, NULL);

For a more complete example which illustrates the use of a callback to set resources,
see “Example 4: Widget In A Cell” on page 216.

Resource Name Automatic Setting

XmNlabelString Current cell content, as a string.

XmNfontList Current cell font.

XmNbackground Current cell background.

XmNforeground Current cell foreground.

XmNalignment Current cell alignment.

XmNsensitive Current cell sensitivity.
112 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Data 4

c2-editt.fm5 Page 113 Thursday, January 22, 2009 12:29 PM
 EditTable Data
Data structures The values of every cell in a table can be created and maintained entirely by the

EditTable widget. Alternatively, the application can define and manage the data
structures holding the values of every cell in the table. The XmNuseOriginalData
resource needs to be set to True at EditTable widget creation time if the application
wants to share the table data with the widget. In either case, the EditTable creates and
manages the data structures for the row annotation and for the column annotation.

Application-defined Data Structures
If the application defines and maintains the data structures for the cell values, then the
data structures required are a collection of arrays with the same number of elements;
one array for every column in the table. The application will need to pass the address
of each array to the EditTable by using the XintEditTableFillColumnData function. If
the end user makes a change in the value of a cell, then the EditTable widget will
update the application’s data with the new value. When the application directly
changes the values in one or more cells in a column, then the application must use the
function XintEditTableUpdateDataDisplay to signal the EditTable widget that the
display of a column needs to be updated. When the application shares the table data
with the widget, there are restrictions on the operations that can be performed on the
table. For instance, rows can not be deleted from the table. When the end user deletes
a column, the application will need to use a delete column callback so that it is aware
that the column has been deleted from the table.

Specifying Undefined Values
If the value of a cell is undefined, EditTable will display an empty cell. To specify an
undefined value for a cell, use the following defined constants:

Defined Constant Description

XintUNDEFINED_SHORT Specifies undefined short integer value.

XintUNDEFINED_INTEGER Specifies undefined integer value.

XintUNDEFINED_LONG Specifies undefined long integer value.

XintUNDEFINED_FLOAT Specifies undefined floating point value.

XintUNDEFINED_DOUBLE Specifies undefined double precision floating point value.

XintUNDEFINED_STRING Specifies undefined character string.

XintUNDEFINED_POINTER Specifies NULL pointer.
EditTable Programming Guide 113

EDITTABLE WIDGET
EditTable Actions4

c2-editt.fm5 Page 114 Thursday, January 22, 2009 12:29 PM
EditTable Actions
The following action procedures are defined by the EditTable widget for
manipulating a table. These action procedures can be tied to user actions via a
translation table.

Name Description

AnnotationEdit() Calls the callback list specified by the resource
XmNeditAnnotationCallback.

AnnotationStartSelect()
or (single)

Initiates a row or column selection operation and
clears all previous selections.

AnnotationsStartSelect(multiple) Initiates a row or column selection operation and adds
to the previous selections.

AnnotationExtendSelect() Extends the existing row or column selections to a list
of rows or columns according to the position of the
mouse pointer.

AnnotationEndSelect() Terminates the pointer selection in the annotation area
and marks the selection block. It calls the callback list
specified by the resource
XmNcolumnCallback or XmNrowCallback.

AnnotationResizeHandlers
(tolerance)

Shows the row or column resizing cursor when the
mousepointer is over the border between adjacent rows
or columns in the annotation area. Tolerance is the maxi-
mum distance in pixels within which the resizing cursor
will be shown. If it is null or not a number, the tolerance
will be set to 3.

AnnotationStartDrag(move) Initiates a row or column move operation.

AnnotationStartDrag(copy) Initiates a row or column copy operation.

AnnotationStartDrag(resize) Initiates a row or column resize operation.

AnnotationStartDrag(move,
resize) or (copy, resize)

Initiates one of the specified operations on a row or
column. Resize will be initiated if pointer is pressed
close to the row or column border, otherwise a move or
copy will be initiated.

AnnotationExtendDrag() Extends the drag operation.

AnnotationEndDrag() Terminates the drag operation and calls callback
XmNdragCallback.

EditTableEditCell() If a cell has been selected, this routine calls the call-
back list specified by the resource XmNcheckEdit-
ModeCallback.
114 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Actions 4

c2-editt.fm5 Page 115 Thursday, January 22, 2009 12:29 PM
EditTableConfirmEdit() Calls the callbacks for XmNvalidateValueCallback. If
the new value is approved, it is stored into the cell being
edited, otherwise the old value is restored.

EditTableStartSelect() or (single) Initiates selection of a block of cells and clears all pre-
vious selections.

EditTableStartSelect(row) or (col-
umn)

Initiates a row or a column selection from inside the
table and clears all previous selections.

EditTableStartSelect
(multiple)

Initiates the selection of a block of cells and adds to
the previous selections.

EditTableStartSelect(multiple,
row) or (multiple, column)

Initiates a row or a column selection from inside the
table and adds to the previous selections.

EditTableExtendSelect() Extends the existing cell selection to a block of cells
according to the position of the mouse pointer.

EditTableEndSelect() Terminates the pointer selection and marks the selec-
tion area. It calls the callback list specified by
XmNselectCellCallback.

EditTableClearAllSelections() Clears all existing selections.

EditTableClearSelection() Clears the selection where the pointer resides.

EditTableEnterCell(Down) Moves the cursor (highlight) to the cell below the cur-
rently selected one and calls the callback list specified
by the resource XmNtraverseCellCallback.

EditTableEnterCell(Left) Moves the cursor (highlight) to the cell to the left of the
currently selected one and calls the callback list specified
by the resource XmNtraverseCellCallback.

EditTableEnterCell(Right) Moves the cursor (highlight) to the cell to the right of the cur-
rently selected one and calls the callback list specified by the
resource XmNtraverseCellCallback.

EditTableEnterCell(Pointer) Moves the cursor (highlight) to the cell that the user has
clicked on and calls the callback list specified by the
resource XmNtraverseCellCallback.

EditTableEnterCell(Up) Moves the cursor (highlight) to the cell above the currently
selected one and calls the callback list specified by the
resource XmNtraverseCellCallback.

EditTableInsertColumns() If a column has been selected, this routine inserts the
column(s) on the clipboard before the selected column.

EditTableInsertRows() If a row has been selected, this routine inserts the
row(s) on the clipboard before the selected row.

Name (continued) Description
EditTable Programming Guide 115

EDITTABLE WIDGET
EditTable Actions4

c2-editt.fm5 Page 116 Thursday, January 22, 2009 12:29 PM
EditTablePasteColumn() If a column has been selected, this routine replaces the
selected column with the column on the clipboard.

EditTablePasteRows() If a row has been selected, this routine replaces the
selected row (and possibly the rows below the selected
row) with the row(s) on the clipboard.

EditTableCopyColumn() Copies the data of the currently selected (highlighted) col-
umn to the clipboard.

EditTableCopyRows() Copies the data of the currently selected (highlighted) rows
to the clipboard.

EditTableTraverseCurrent() Causes EditTable widget to receive input focus.

EditTableDeleteColumns() Deletes the currently selected (highlighted) columns
and saves the column data to the clipboard.

EditTableDeleteRows() Deletes the currently selected (highlighted) rows and
saves the row data to the clipboard.

EditTableUndeleteColumns() Restores the columns that were last deleted.

EditTableUndeleteRows() Restores the rows that were last deleted.

EditTableEnterTable() Sets the keyboard focus to the table.

EditTableStartDrag(copy) Initiates a cell copy operation.

EditTableStartDrag(move) Initiates a cell move operation.

EditTableStartDrag(resize) Initiates a cell resize operation.

EditTableStartDrag(move, resize)
or (copy, resize)

Initiates one of the specified operations on a cell.
Resize will be initiated if pointer is pressed close to
the cell border, otherwise a move or copy will be initi-
ated.

EditTableExtendDrag() Extends a cell drag operation.

EditTableEndDrag() Terminates the cell drag operation and calls callback
XmNdragCallback.

EditTableResizeHandler() Shows the cell resizing cursor when mouse pointer is
over the border/corner between adjacent cells.

NextTabGroup() Traverses to the next tab group.

PreviousTabGroup() Traverses to the previous tab group.

TextConfirmEdit() Calls callback XmNvalidateValueCallback to confirm the
value entered.

TextAbandonEdit() Cancels current editing operation on a cell and
restores original value.

Name (continued) Description
116 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Translations 4

c2-editt.fm5 Page 117 Thursday, January 22, 2009 12:29 PM
EditTable Translations
The default translation table defined for use with an EditTable widget is the following:

Event Sequence Action Name

<FocusIn> ManagerFocusIn()
EditTableEnterCell(FocusIn)

<FocusOut> ManagerFocusOut()

Shift <Key>Tab EditTableEnterCell(Left)
EditTableClearAllSelections()

Shift <Key>Return EditTableEnterCell(Up)
EditTableClearAllSelections()

None <Key>osfLeft EditTableEnterCell(Left)
EditTableClearAllSelections()

None <Key>osfRight EditTableEnterCell(Right)
EditTableClearAllSelections()

None <Key>Tab EditTableEnterCell(Right)
EditTableClearAllSelections()

None <Key>osfUp EditTableEnterCell(Up)
EditTableClearAllSelections()

None <Key>osfDown EditTableEnterCell(Down)
EditTableClearAllSelections()

None <Key>Return EditTableEnterCell(Down)
EditTableClearAllSelections()

~Ctrl ~Shift ~Meta ~Alt <Btn1Down> EditTableEnterCell(Pointer)
EditTableStartSelect(single)

<Btn1Up> EditTableEndSelect()

<Btn2Down> MotifDragStart()

<Key>osfActivate EditTableConfirmEdit()

~Ctrl ~Meta ~Alt <Key> EditTableEditCell()

Ctrl ~Meta ~Alt <Key> Tab NextTabGroup()

Shift Ctrl ~Meta ~Alt <Key> Tab PreviousTabGroup()
EditTable Programming Guide 117

EDITTABLE WIDGET
EditTable Translations4

c2-editt.fm5 Page 118 Thursday, January 22, 2009 12:29 PM
Actions With No Default Translations
Some EditTable actions have no default translations specified. In particular, the
default translation table contains no definitions for any cut, copy and paste
operations on rows and columns nor does it contain definitions for any of the
annotation actions.

Changing the Default Translation Table
The EditTable default translations table can be modified using the functions
XtAugmentTranslations or XtOverrideTranslations or it can be replaced by
specifying your own translation table using resource XmNtranslations. For
example, you may wish to add support for multiple selections (add a translation for
action EditTableStartSelect(multiple)) or add translations for cut and paste
operations.

Specifying Translations for Annotation Actions
The annotation actions (AnnotationEdit, AnnotationStartSelect,
AnnotationExtendSelect, AnnotationEndSelect, AnnotationStartDrag,
AnnotationExtendDrag and AnnotationEndDrag) have no default translations.
When the EditTable widget is not a child of an INT Scroll widget, you must merge
(using XtAugmentTranslations or XtOverrideTranslations) the application defined
translations for the annotation actions with the existing default translation table.
When an EditTable widget is a child of an INT Scroll widget, then the translations
for column annotation actions must be registered by specifying a translation table for
those actions as the value of the EditTable resource
XmNcolumnAnnotationTranslations. Similarly, the translations for row
annotation actions must be registered by specifying a translation table for those
actions as the value of the EditTable resource XmNrowAnnotationTranslations.
Note that it is possible to use the same translation table for the row and column
annotation translations.

Text Actions
Actions TextConfirmEdit and TextAbandonEdit should not be registered directly to
the EditTable widget but rather to the internal text widget(s) created by the EditTable
widget. The ID of the text widgets created by an EditTable can be obtained using
convenience function XintEditTableGetTextChild.
118 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Callbacks 4

c2-editt.fm5 Page 119 Thursday, January 22, 2009 12:29 PM
EditTable Callbacks
The following callbacks are defined by an EditTable widget.

Name Structure Reason

XmNcellAttributesCall-
back

XintEditTableCellAt-
tributesCallbackStruct

XintCR_CELL_RESIZE
XintCR_COLUMN_RESIZE
XintCR_DISPLAY_CELL
XintCR_ROW_RESIZE

XmNcellWidgetDis-
playCallback

XintEditTableCellWid-
getCallbackStruct

XintCR_QUERY_CELL_
WIDGET
XintCR_UPDATE_CELL_
WIDGET

XmNcheckEditMode-
Callback

XintEditTableCheck-
EditModeCallbackStruct

XintCR_CHECK_EDIT_MODE

XmNcolumnCallback XintEditTableOperation-
CallbackStruct

XintCR_DELETE_COLUMN
XintCR_INSERT_COLUMN
XintCR_SELECT_COLUMN

XmNdoubleClickCall-
back

XintEditTableDouble-
ClickCallbackStruct

XintCR_DOUBLE_CLICK

XmNdragCallback XintEditTableDrag-
CallbackStruct

XintCR_CELL_MOVE
XintCR_CELL_RESIZE
XintCR_CELL_COPY
XintCR_COLUMN_MOVE
XintCR_COLUMN_RESIZE
XintCR_COLUMN_COPY
XintCR_ROW_MOVE
XintCR_ROW_RESIZE
XintCR_ROW_COPY

XmNdragDropCallback XintEditTableDragDrop-
CallbackStruct

XintCR_DRAG
XintCR_DROP

XmNeditAnnotation-
Callback

XintEditTableEditAnno-
tationCallbackStruct

XintCR_EDIT_COLUMN_
ANNOTATION
XintCR_EDIT_ROW_
ANNOTATION

XmNformatCellCall-
back

XintEditTableFormat-
CellCallbackStruct

XintCR_DISPLAY_CELL
XintCR_CALCULATE_CELL_
WIDTH
XintCR_CALCLULATE_CELL_
HEIGHT
EditTable Programming Guide 119

EDITTABLE WIDGET
EditTable Callbacks4

c2-editt.fm5 Page 120 Thursday, January 22, 2009 12:29 PM
XmNformatColumnAn-
notationCallback

XintEditTableFormat-
AnnotationCallback-
Struct

XintCR_GET_COLUMN_
ANNOTATION

XmNformatRowAnno-
tationCallback

XintEditTableFormat-
AnnotationCallback-
Struct

XintCR_GET_ROW_
ANNOTATION

XmNrowCallback XintEditTableOperation-
CallbackStruct

XintCR_DELETE_ROW
XintCR_INSERT_ROW
XintCR_SELECT_ROW

XmNselectCellCallback XintEditTablOperation-
CallbackStruct

XintCR_SELECT_CELL

XmNtraverseCellCall-
back

XintEditTableTraverse-
CellCallbackStruct

XintCR_TRAVERSE_CELL_
DOWN
XintCR_TRAVERSE_CELL_
LEFT
XintCR_TRAVERSE_CELL_
RIGHT
XintCR_TRAVERSE_CELL_UP
XintCR_TRAVERSE_CELL_
POINTER
XintCR_TRAVERSE_CELL_
FOCUS_IN

XmNvalidateValueCall-
back

XintEditTableValidate-
ValueCallbackStruct

XintCR_VALIDATE_VALUE

Name (continued) Structure Reason
120 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Callbacks 4

c2-editt.fm5 Page 121 Thursday, January 22, 2009 12:29 PM
XintEditTableCellAttributesCallbackStruct
The following table lists the members of the callback structure
XintEditTableCellAttributesCallbackStruct used by the EditTable widget for callback
XmNcellAttributesCallback.

The reason will be set to one of the following defined constants

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the event that triggered the callback.

int row Indicates the row number of the selected cell.

int column Indicates the column number of the selected cell.

int alignment Text alignment constant in the cell.

Pixel background Cell background color

Pixel foreground Cell foreground color.

int font_table_index Index to the font table. If there is no font table added to
EditTable, the index will have no effect. To add font
table, refer to“XmNfontTable” on page 99.

Defined Constant Description

XintCR_CELL_RESIZE Indicates that the end user has performed a cell
resize operation.

XintCR_COLUMN_RESIZE Indicates that the end user has performed a column resize
operation.

XintCR_ROW_RESIZE Indicates that the end user has performed a row resize
operation.

XintCR_DISPLAY_CELL The cell is about to be displayed on screen. Allows
the programmer to set the cell attributes before the
cell is displayed.
EditTable Programming Guide 121

EDITTABLE WIDGET
EditTable Callbacks4

c2-editt.fm5 Page 122 Thursday, January 22, 2009 12:29 PM
XintEditTableCellWidgetCallbackStruct
The following ordered table lists the members of the callback structure
XintEditTableCellWidgetCallbackStruct used by the EditTable widget for callback
XmNcellWidgetDisplayCallback.

The reason member will be set to one of the following defined constants.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the event that triggered the callback.

int row Indicates the row number of the selected cell.

int column Indicates the column number of the selected cell.

Widget widget ID of the Widget In a Cell.

XintCellWidget-
Resources *

resources Points to the resources that may be set automatically
on the widget.

Boolean doit Indicates whether or not the resources defined above
will be set on the widget before it is drawn. This value
is initialized to the setting of resource XmNcellWid-
getSetResources.

Boolean displayit Indicates whether or not the widget in this cell should
be displayed.

Defined Constant Description

XintCR_QUERY_CELL_WIDGET The column width or row height was set to 0
(for auto calculate). Allows the programmer to
set the resources on the widget so that proper
cell size can be calculated.

XintCR_UPDATE_CELL_WIDGET The widget is about to be drawn on the virtual
screen. Allows the programmer to set the
resources on this widget before it is drawn.
122 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Callbacks 4

c2-editt.fm5 Page 123 Thursday, January 22, 2009 12:29 PM
Structure XintCellWidgetResources is defined as follows.
typedef struct {

 String string;
 String font;
 Pixel background;
 Pixel foreground;
 int alignment;
 int sensitive;

} XintCellWidgetResources;

string Format of the display string for the cell value.

font X window font name for the display string.

background Cell background color.

foreground Cell foreground color.

alignment Motif alignment constant for the cell.

sensitive Cell read-only.

If the XmNcellWidgetSetResources constraint resource is set to True, primitive
widgets, such as labels and buttons, do not require a callback. Their resources will be
set correctly.

In other cases, such as inserting toggle buttons or option menus, a callback is required.
Inside this callback the application should extract the current cell contents, then set the
widget state and graphic resources accordingly. When the state of a widget in a cell is
changed (for example, an option menu is changed to a new selection), the application
should update the cell contents. A cell is identified by its location. If a widget is used
for more than one cell, the cell location can be obtained by using function
XintEditTableGetCellPointerPosition.

The doit member will be set to the value of the constraint resource
XmNcellWidgetSetResources before the callback is called.

 XintEditTableCheckEditModeCallbackStruct
The following ordered table lists the members of the callback structure
XintEditTableCheckEditModeCallbackStruct used by the EditTable widget for the
check edit mode callback.
EditTable Programming Guide 123

EDITTABLE WIDGET
EditTable Callbacks4

c2-editt.fm5 Page 124 Thursday, January 22, 2009 12:29 PM
The column_edit_mode member will be set to one of the following:

The doit flag is used when column_edit_mode has the value
XintCOLUMN_EDITABLE. The associated action routine sets this flag to True
before the callback list is invoked. A callback procedure should set this flag to False
if the cell (in an editable column) is not enabled for editing. When column_edit_mode
has the value XintCOLUMN_NON_EDITABLE the cell selected for editing always is
non-editable.

Data Type Member Description

int reason Set to XintCR_CHECK_EDIT_MODE.

XEvent * event Points to the event that triggered the callback.

int column Indicates the column containing the cell to be
edited.

int row Indicates the row containing the cell to be edited.

int column_edit_mode Indicates the edit mode of column containing the
cell to be edited.

Boolean doit Indicates whether the cell is editable (used only when
the column containing the cell is editable).

Defined Constant Description

XintCOLUMN_EDITABLE Indicates that the column containing the cell is
editable.

XintCOLUMN_NON_EDITABLE Indicates that the column containing the cell is
not editable.
124 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Callbacks 4

c2-editt.fm5 Page 125 Thursday, January 22, 2009 12:29 PM
XintEditTableDoubleClickCallbackStruct
The following ordered table lists the members of the callback structure
XintEditTableDoubleClickCallbackStruct used by the EditTable widget for callback
XmNdoubleClickCallback.

XintEditTableDragCallbackStruct
The following ordered table lists the members of the callback structure
XintEditTableDragCallbackStruct used by the EditTable widget for callback
XmNdragCallback.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the event that triggered the callback.

int column Indicates the column number where the button was
pressed.

int row Indicates the row number where the button was pressed.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the event that triggered the callback.

int src_column Source column index (set if a column or cell operation).

int src_row Source row index (set if a row or cell operation).

int current_column Destination column index (set if a column or cell oper-
ation).

int current_row Destination row index (set if a row or cell operation).

Boolean doit Set to False to cancel move, resize or copy operation.
EditTable Programming Guide 125

EDITTABLE WIDGET
EditTable Callbacks4

c2-editt.fm5 Page 126 Thursday, January 22, 2009 12:29 PM
The reason member will be set to one of the following defined constants:

XintEditTableDragDropCallbackStruct
Callback XmNdragDropCallback is defined by the EditObject class to support Motif
drag and drop operations. The EditTable class redefines a new callback structure,
XintEditTableDragDropCallbackStruct, that is passed when this callback is invoked
for an EditTable widget.

Defined Constant Description

XintCR_CELL_MOVE Indicates that the end user has performed a cell move
operation (moving the content of a cell into another).

XintCR_CELL_RESIZE Indicates that the end user has performed a cell resize
operation.

XintCR_CELL_COPY Indicates that the end user has performed a cell copy
operation.

XintCR_COLUMN_FREEZE Indicates that the end user has performed a column move
operation into a frozen column.

XintCR_COLUMN_MOVE Indicates that the end user has performed a column move
operation.

XintCR_COLMUN_RELEASE Indicates that the end user has performed a column move
operation from a frozen column.

XintCR_COLUMN_RESIZE Indicates that the end user has performed a column resize
operation.

XintCR_COLUMN_COPY Indicates that the end user has performed a column copy
operation.

XintCR_ROW_FREEZE Indicates that the end user has performed a row move
operation into a frozen row.

XintCR_ROW_MOVE Indicates that the end user has performed a row move
operation.

XintCR_ROW_RELEASE Indicates that the end user has performed a row move
operation from a frozen row.

XintCR_ROW_RESIZE Indicates that the end user has performed a row resize
operation.

XintCR_ROW_COPY Indicates that the end user has performed a row copy
operation.

Data Type Member Description

int reason Indicates why the callback was invoked.
126 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Callbacks 4

c2-editt.fm5 Page 127 Thursday, January 22, 2009 12:29 PM
XintEditTableEditAnnotationCallbackStruct
The following ordered table lists the members of the callback structure
XintEditTableEditAnnotationCallbackStruct used by the EditTable widget for the edit
annotation callback.

XEvent * event Points to the XEvent that triggered the callback.

Object object Graphic object being dragged or dropped to. This field is
NULL if drag or drop is not from or to a graphic object.

int operation This field is 0 on a drag. On a drop, it can be set to
XintDROP_COPY, XintDROP_MOVE or
XintDROP_LINK. You can modify this field on a drop
to change the operation.

Atom * atoms Array of source or destination atoms supported.

int atom_count Size of array atoms.

int x,y Location of the pointer where drag started or drop
occurred.

int row_start On drag, starting index of the row that is dragged. On
drop, row index where the cursor is located and where
the cells will be dropped. You can modify this field on a
drag or drop operation.

int row_count On drag, number of rows being dragged. On drop, this
field is not used. You can modify this field on a drag
operation.

int column_start On drag, starting index of the column that is dragged. On
drop, column index where the cursor is located and
where the cells will be dropped. You can modify this
field on a drag or drop operation.

int column_count On drag, number of columns being dragged. On drop, this
field is not used. You can modify this field on a drag opera-
tion.

Boolean doit Set to False to cancel the drag or drop operation.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the event that triggered the callback.

int row Indicates the row containing the annotation to be edited.

Data Type Member Description
EditTable Programming Guide 127

EDITTABLE WIDGET
EditTable Callbacks4

c2-editt.fm5 Page 128 Thursday, January 22, 2009 12:29 PM
The reason member will be set to one of the following defined constants:

When the if_auto flag is True, it indicates that the annotation selected for editing was
generated automatically by the EditTable widget. If the annotation was generated by
the EditTable widget, then it cannot be edited by the application or the end user.

int column Indicates the column containing the annotation to be edited.

Boolean if_auto Indicates whether the annotation selected for editing is edit-
able.

Defined Constant Description

XintCR_EDIT_COLUMN_
ANNOTATION

Indicates that the end user has selected a col-
umn annotation for editing.

XintCR_EDIT_ROW_
ANNOTATION

Indicates that the end user has selected a row
annotation for editing.

Data Type Member Description
128 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Callbacks 4

c2-editt.fm5 Page 129 Thursday, January 22, 2009 12:29 PM
XintEditTableFormatAnnotationCallbackStruct
The following table lists the members of the callback structure
XintEditTableFormatAnnotationCallbackStruct used by the EditTable widget for the
format column annotation callback and format row annotation callback.

The reason member will be set to one of the following defined constants:

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Pointer to the XEvent that triggered the call-
back.

int row The row index. If the callback is to format
column annotation, the row index will always
be 1.

int column The column index. If the callback is to format
row annotation, the column index will always
be 1.

char * annotation_string The annotation string to be displayed in the
column/row. EditTable will make a copy of
the string.

Defined Constant Description

XintCR_GET_COLUMN_ANNOTATION Indicates that EditTable is about to
display the column annotation

XintCR_GET_ROW_ANNOTATION Indicates that EditTable is about to
display the row annotation.
EditTable Programming Guide 129

EDITTABLE WIDGET
EditTable Callbacks4

c2-editt.fm5 Page 130 Thursday, January 22, 2009 12:29 PM
XintEditTableFormatCellCallbackStruct
The following table lists callback XintEditTableFormatCellCallbackStruct members
used by the EditTable widget for allowing the application to define its own
mechanism to format a cell before display:

The reason member will be set to one of the following defined constants:

Union XintCellValue is defined as follows
typedef union {

short short_value;
int integer_value;
long long_value;
float float_value;
double double_value;
char *string_value;
XtPointer pointer_value;

} XintCellValue;

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Pointer to the XEvent that triggered the call-
back.

int row The index of the row of the cell to be formatted.

int column The index of the column of the cell to be for-
matted.

int column_data_type The column data type for that cell.

XintCellValue cell_value A Union containing the cell value.

char * display_string Returns the string to display in that cell.

Boolean to_be_freed If Set to True, string display_string will be freed
by the widget after it has been used. This member
is initialized to False, which corresponds to the case
where display_string is allocated statically by the
application.

Defined Constant Description

XintCR_DISPLAY_CELL Formatting required to display cell contents.

XintCR_CALCULATE_CELL_WIDTH Formatting required to calculate cell width.

XintCR_CALCULATE_CELL_HEIGHT Formatting required to calculate cell height.
130 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Callbacks 4

c2-editt.fm5 Page 131 Thursday, January 22, 2009 12:29 PM
XintEditTableOperationCallbackStruct
The following ordered table lists the members of the callback structure
XintEditTableOperationCallbackStruct used by the EditTable widget for the column,
row, and select cell callbacks.

The reason member will be set to one of the following defined constants:

The doit flag is used for the row delete and column delete operations. The associated
action routine sets this flag to True before the callback list is invoked. A callback
procedure should set this flag to False if the row or column should not be deleted by
the action routine.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Pointer to the XEvent that triggered the callback.

int column_start Indicates the first column involved in the operation.

int row_start Indicates the first row involved in the operation.

int column_count Indicates the number of columns involved in the
operation.

int row_count Indicates the number of rows involved in the opera-
tion.

Boolean doit Indicates whether the associated action should be
executed (used only for delete row and for delete
column operations).

Defined Constant Description

XintCR_DELETE_COLUMN Indicates that a column will be deleted if the doit
flag is set to True.

XintCR_INSERT_COLUMN Indicates that one or more columns will be inserted.

XintCR_SELECT_COLUMN Indicates that one or more columns have been
selected.

XintCR_DELETE_ROW Indicates that a row will be deleted if the doit flag is
set to True.

XintCR_INSERT_ROW Indicates that one or more rows will be inserted.

XintCR_SELECT_ROW Indicates that one or more rows have been selected.

XintCR_SELECT_CELL Indicates that one or more cells have been selected.
EditTable Programming Guide 131

EDITTABLE WIDGET
EditTable Callbacks4

c2-editt.fm5 Page 132 Thursday, January 22, 2009 12:29 PM
XintEditTableTraverseCellCallbackStruct
The following ordered table lists the members of the callback structure
XintEditTableTraverseCellCallbackStruct used by the EditTable widget for the
traverse cell callback.

The reason member will be set to one of the following defined constants:

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the event that triggered the callback.

int row Indicates the row number of the cell where the
cell pointer is currently located.

int column Indicates the column number of the cell where
the cell pointer is currently located.

int next_row Indicates the row number of the cell that the cell
pointer will enter.

int next_column Indicates the column number of the cell that the
cell pointer will enter.

int number_of_columns Indicates the number of columns in the table.

int number_of_rows Indicates the number of rows in the table.

Defined Constant Description

XintCR_TRAVERSE_CELL_DOWN Indicates cell entered from cell above.

XintCR_TRAVERSE_CELL_LEFT Indicates that cell entered from cell on left.

XintCR_TRAVERSE_CELL_RIGHT Indicates cell entered from cell on the right.

XintCR_TRAVERSE_CELL_UP Indicates cell entered from cell below.

XintCR_TRAVERSE_CELL_POINTER Indicates cell entered with pointer selection.

XintCR_TRAVERSE_CELL_FOCUS_IN Indicates cell entered because focus was
brought back to the table.
132 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Callbacks 4

c2-editt.fm5 Page 133 Thursday, January 22, 2009 12:29 PM
XintEditTableValidateValueCallbackStruct
The following ordered table lists the members of the callback structure
XintEditTable-ValidateValueCallbackStruct used by the EditTable widget for the
validate value callback.

The associated action routine sets the doit flag to True before the callback list is
invoked. To cancel the editing and restore the old cell value, simply set the doit flag to
False. To overwrite the user entry and specify a new cell value you have two options.
The first solution is to replace member new_value_string with your own string. In this
case, if you have allocated the new value string dynamically, you may want to set
to_be_freed to True so that it is deallocated by the table after it is no longer needed.
The second solution is to replace directly member cell_value with the new cell value.

Data Type
 Member Description

int reason Set to XintCR_VALIDATE_VALUE.

XEvent * event Points to the event that triggered the callback.

int row Indicates the row number of the cell whose
value needs to be validated.

int column Indicates the column number of the cell whose
value needs to be validated.

int column_data_type Indicates the data type of the cell whose value
needs to be validated.

char * format A character string containing the (C language) for-
mat descriptor for the cell whose value needs to be
validated.

char * old_value_string A character string containing the value of the
cell before it was changed.

char * new_value_string A character string containing the value of the
cell after it was changed.

Boolean to_be_freed Set to True if you want EditTable to free the
string specified in new_value_string after it has
been used.

XintCellValue cell_value Pointer to the new cell value.

Boolean doit Indicates whether the cell’s value should be
changed to the new value.
EditTable Programming Guide 133

EDITTABLE WIDGET
EditTable Callbacks4

c2-editt.fm5 Page 134 Thursday, January 22, 2009 12:29 PM
Cell Attributes Callback
This callback is called by the cell painting routine in EditTable. The callback
structure XintEditTableCellAttributesCallbackStruct contains the display attributes
such as text alignment, background, foreground, and the font table index. The font
table index will have affect if and only if a valid font table is added to the EditTable
(refer to“XmNfontTable” on page 99 for more information). Using this callback, the
programmer can set these cell attributes dynamically. In addition, because the
callback is dynamic, memory for these attributes does not need to be allocated by
EditTable, and thus improves the overall performance.

Check Edit Mode Callback
This type of callback is called by the EditTableEditCell action routine when a cell
has been selected for editing. The callback structure
XintEditTableCheckEditModeCallbackStruct will contain the edit mode of the
column containing the cell. This callback should determine whether the cell can be
edited by the user and set the doit flag to False if the cell should not be edited. If the
cell is in a non-editable column, the setting of the doit flag is ignored by the action
routine and the cell will not be editable. This callback can be used by the application
to display a message so that the user will know that the selected cell cannot be edited.
Another application for this callback is implementing non-editable cells in an
editable column.

Column Callback
This type of callback is called by the EditTableEndSelect, AnnotationEndSelect,
EditTableDeleteColumns, and EditTableInsertColumns action routines. The
callback is called after the action occurs, except for EditTableDeleteColumns where
it is called before. The callback structure XintEditTableOperationCallbackStruct
will contain the indices of the column(s) being operated on. The callback structure
also contains the doit flag which is initialized to True by the
EditTableDeleteColumns action procedure. If you do not want to delete the selected
column(s), then set the doit flag to False.
134 EditTable Programming Guide

EDITTABLE WIDGET
Double-click Callback 4

c2-editt.fm5 Page 135 Thursday, January 22, 2009 12:29 PM
Double-click Callback
This type of callback is called when the user double clicks on a cell. No action is
connected to this callback. The callback structure is
XintEditTableDoubleClickCallback. The code of the Button used for the double
click can be found in the XEvent structure. The callback structure
XintEditTableDragCallbackStruct will contain the indices of the source and
destination cells, rows or columns. The callback structure also contains the doit flag
which is initialized to True. If you do not want to delete the selected column(s), then
set the doit flag to False. A number of resources, XmNdragForeground,
XmNdragCursorType, XmNdragGridLineStyle and
XmNdrawShowCellContent is provided to customize the appearance of the cell,
row or column being dragged.

Drag Callback
This type of callback is called by the AnnotationEndDrag and EditTableEndDrag
action routines before a Copy, Move or Resize operation action occurs on a cell, row
or column. This type of callback only allows the manipulation of cells, rows or
columns locally. EditObject callback XmNdragDropCallback provides full Motif
Drag and Drop functionality. Refer to Chapter 1—Introduction and Chapter
3—EditObject Widget Class for more information on Motif Drag and Drop support.

Edit Annotation Callback
This type of callback is called by the AnnotationEdit action routine so that the
callback list can implement row annotation editing operations and column
annotation editing operations. The callback structure
XintEditTableEditAnnotationCallbackStruct will indicate whether the user has
selected a row annotation or a column annotation and it will specify the location of
the annotation selected. The callback structure will also indicate whether or not the
annotation selected was generated automatically by the EditTable widget. If the
annotation was generated by the widget, then it cannot be edited, and the application
should display a message to that effect.

Format Cell Callback
Called each time the EditTable needs to display a cell when the column format
specifier for that cell is set to NULL or the data type is XintTYPE_POINTER.
Allows the application to provide custom formats or to format complex data types
that are stored in the pointer format.
EditTable Programming Guide 135

EDITTABLE WIDGET
EditTable Callbacks4

c2-editt.fm5 Page 136 Thursday, January 22, 2009 12:29 PM
Format Column Annotation Callback
This type of callback, when added to Xt, is called when automatic annotation is set
to False. It allows the programmer to change the column annotation dynamically.
Since the callback is dynamic, i.e. the programmer can provide column annotation
strings at runtime, EditTable is thus freed from allocating memory to store these
annotation strings. Consequently, the performance of EditTable is improved. Note
that EditTable will make a copy of the annotation string passed in, and thus, it is the
programmer’s responsibility to free the string passed to EditTable.

Format Row Annotation Callback
This type of callback, when added to Xt, is called when automatic annotation is set
to False. It allows the programmer to change the row annotation dynamically. Since
the callback is dynamic, i.e. the programmer can provide row annotation strings at
run-time, EditTable is thus freed from allocating memory to store these annotation
strings. Consequently, the performance of EditTable is improved -- imagine an
EditTable that has tens of thousands of rows. Note that EditTable will make a copy
of the annotation string passed in, and thus, it is the programmer’s responsibility to
free the string passed to EditTable

Row Callback
This type of callback is called by the EditTableEndSelect, AnnotationEndSelect,
EditTableCopyRow, EditTableDeleteRows, and EditTableInsertRows action
routines. The callback is called after the action occurs, except for
EditTableDeleteRows where it is called after. The callback structure
XintEditTableOperationCallbackStruct will contain the indices of the row(s) being
operated on. The callback structure also contains the doit flag which is initialized to
True by the EditTableDeleteRows action procedure. If you do not want to delete the
selected row(s), then set the doit flag to False.

Select Cell Callback
Called by the EditTableEndSelect action routine after the user has selected one or
more cells in the table. XintEditTableOperationCallbackStruct will contain the
indices of the cell(s) selected.

Traverse Cell Callback
This type of callback is called by the EditTable widget whenever the user moves the
cell pointer to a new cell using the keyboard. The action routine EditTableEnterCell
136 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 137 Thursday, January 22, 2009 12:29 PM
calls this type of callback so that the callback procedures can determine whether the
cell should be entered. The callback structure
XintEditTableTraverseCellCallbackStruct will contain the indices of the cell to which
the user wants to traverse. The callback procedure can change the indices of the cell to
be traversed to so that the action procedure moves the cursor to a different cell. Using
this mechanism, the application can control how the user traverses through a table,
skipping over irrelevant cells.

Validate Value Callback
This type of callback is called by the EditTableConfirmEdit action procedure or when
the user terminates editing by leaving a cell. It gives the application programmer the
ability to check the new cell content before it is stored into the table. The callback
structure XintEditTableValidateValueCallbackStruct will contain the location of the
cell being edited as well as the old and new values of the cell. The callback structure
also contains the doit flag which is initialized to True by the EditTableConfirmEdit
action procedure. If you do not want the EditTableConfirmEdit action procedure to
change the value, then set the doit flag to False. Alternatively, you can leave the doit
flag set to True and substitute a different value for the new value so that the action
procedure will change the cell’s value to the application specified value.

EditTable Functions
The following convenience functions are defined for creating and manipulating an
EditTable widget:

Function Name Description

XintCreateEditTable Creates an unmanaged EditTable widget.

XintEditTableAbandonEdit To abandon editing of the current cell and
restore the original value.

XintEditTableAddLocalCallback Adds a callback procedure that is local to a
cell, row or column.

XintEditTableAddToSelection Adds a selection to the table.

XintEditTableAssociateData Associates a Data Object with an EditTable.

XintEditTableCellFlash Makes a cell flash at a specified time inter-
val over a specified period of time.

XintEditTableCellSpanGetRange Returns the span for the specified cell.

XintEditTableCellSpanSetRange Sets the span on a range of cells.
EditTable Programming Guide 137

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 138 Thursday, January 22, 2009 12:29 PM
XintEditTableChangeColumnVisibility Sets a range of columns to be visible or
non visible.

XintEditTableChangeRowVisibility Sets a range of rows to be visible or non
visible.

XintEditTableClearAllSelections Clears all the selections of a table.

XintEditTableClearCells Clears the content of the specified cells.

XintEditTableClearSelectionByNumber Removes a specific selection.

XintEditTableColumnScroll Controls scrolling of columns.

XintEditTableConfirmEdit To confirm the editing of the current cell and
invoke callback XmNvaliidateValueCallback.

XintEditTableCopyColumn Copies a single column to the EditTable
widget’s clipboard.

XintEditTableCopyRows Copies a range of rows to the EditTable
widget’s clipboard.

XintEditTableDefineColumnFormat Defines the format of the cells in a specified
column.

XintEditTableDeleteColumns Copies a range of columns to the EditTable
widget’s clipboard and removes the columns
from the table.

XintEditTableDeleteRows Copies a range of rows to the EditTable
widget’s clipboard and removes the columns
from the table.

XintEditTableFillCell Sets the value of a specified cell.

XintEditTableFillCellNoUpdate Sets the value of a specified cell without
updating the display.

XintEditTableFillColumnAnnotation Sets the column annotation for a specified
column.

XintEditTableFillColumnData Sets the values of every cell in a specified
column using an array of data.

XintEditTableFreezeColumn Moves a specified column to the left side
of the table display so that it always stays
visible when scrolling horizontally.

XintEditTableFreezeRow Moves a specified row to the top of the table
display so that it always stays visible when
scrolling vertically.

Function Name (continued) Description
138 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 139 Thursday, January 22, 2009 12:29 PM
XintEditTableFreezeUpdate To enable or disable geometry updates and
redrawing on the table.

XintEditTableGetCellBackground Returns the background pixel color of a
specified cell.

XintEditTableGetCellData Returns the address of a copy of the value
in a specified cell.

XintEditTableGetCellFont Returns the font index used by a cell.

XintEditTableGetCellForeground Returns the foreground pixel color of a
specified cell.

XintEditTableGetCellGeometry Returns the position and size of a cell
inside the EditTable widget.

XintEditTableGetCellHeight Returns the height of the specified cell.

XintEditTableGetCellPixmap Returns the pixmap ID of a cell.

XintEditTableGetCellPointerPosition Returns the location of the cell pointer.

XintEditTableGetCellWidget Returns the cell widget for the specified
location.

XintEditTableGetCellWidth Returns the width of the specified cell.

XintEditTableGetColumnAnnotionAlignment Returns a pointer to the column's annotation
alignment.

XintEditTableGetColumnAttributes Returns the attributes of a specified column.

XintEditTableGetColumnData Returns the address of a copy of an array
containing the values in the cells of a spec-
ified column.

XintEditTableGetColumnUserData Returns a pointer to a column’s user data.

XintEditTableGetFrozenColumns Returns the address of an integer array
containing the column numbers of the fro-
zen columns.

XintEditTableGetFrozenRows Returns the address of an integer array
containing the row numbers of the frozen
rows.

XintEditTableGetHiddenColumns Returns the columns that are not visible.

XintEditTableGetHiddenRows Returns the rows that are not visible.

XintEditTableGetSelectedCells Returns information regarding the selected
cells.

XintEditTableGetSelectedColumns Returns information regarding the selected
columns.

Function Name (continued) Description
EditTable Programming Guide 139

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 140 Thursday, January 22, 2009 12:29 PM
XintEditTableGetSelectedRows Returns information regarding the selected
rows.

XintEditTableGetSelectionByNumber Extracts a specific selection from the table.

XintEditTableGetSelectionCount Returns the number of selections in the table.

XintEditTableGetSubtable Returns the ID of a specific subtable.

XintEditTableGetTextChild Returns the ID of the text widget used to
edit a cell content.

XintEditTableGetVisibleArea Passes back the visible area of the table.

XintEditTableInsertColumns Inserts a specified number of annotated
columns before a specified column.

XintEditTableInsertRows Inserts a specified number of nonannotated
rows before a specified row.

XintEditTableIsCellDefined Tells if a cell is defined or not.

XintEditTableIsColumnFrozen Tells if a column is frozen or not.

XintEditTableIsRowFrozen Tells if a row is frozen or not.

XintEditTableIsColumnHidden Tells if a column is hidden or not.

XintEditTableIsRowHidden Tells if a row is hidden or not.

XintEditTableOutputAscii Creates an ASCII formatted file based on
a specified range of cells in a table.

XintEditTableOutputPostscript Creates a PostScript file based on a speci-
fied range of cells in the table.

XintEditTableOutputSimplePS Output of PostScript file carries only the
courier-10 font and ignores all but left and
middle alignment.

XintEditTableOutputSimplePS2 Output of PostScript file uses fonts and
alignments set in EditTable.

XintEditTableOutputSylkFile Creates a SYLK formatted file based on a
specified range of cells in the table.

XintEditTablePSReportStyle Creates a Postscript formatted report based on
a specified range of cells in the table.

XintEditTablePasteColumns Replaces the values in a specified range of
columns by a range of columns contained on
the EditTable widget’s clipboard.

XintEditTablePasteRows Replaces the values in a specified range of
rows by a range of rows contained on the
EditTable widget’s clipboard.

Function Name (continued) Description
140 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 141 Thursday, January 22, 2009 12:29 PM
XintEditTableReadAscii Reads an ASCII file and loads the data.

XintEditTableReleaseColumn Changes a frozen column’s state so that it
is no longer frozen.

XintEditTableReleaseRow Changes a frozen row’s state so that it is
no longer frozen.

XintEditTableReorderColumns Changes the ordering of a range of columns.

XintEditTableReorderRows Changes the ordering of a range of rows.

XintEditTableRemoveAllLocalCallbacks Removes all local callback procedures
attached to a specified callback.

XintEditTableRemoveLocalCallback Removes a local callback procedure
attached to a cell, row or column.

XintEditTableRowScroll Allows the application to control scrolling
or rows.

XintEditTableSetCellBackground Sets the background color of a specified
set of cells.

XintEditTableSetCellDisplayAttributes Sets the background, foreground and data
of a specified cell.

XintEditTableSetCellFont Sets the font of a range of cells.

XintEditTableSetCellForeground Sets the foreground color of a specified set
of cells.

XintEditTableSetCellHeight Sets the height of a range of cells.

XintEditTableSetCellPixmap Sets the background pixmap of a specified
set of cells.

XintEditTableSetCellPixmapList Sets the background pixmap of a set of
cells from a pixmap list.

XintEditTableSetCellPointerPosition Specifies the cell location at which to
position the cell pointer.

XintEditTableSetCellWidth Sets the width of a range of cells.

XintEditTableSetColumnAnnotationAlignment Specifies the annotation alignment starting at a
specific column and using that alignment for a
specified number of columns.

XintEditTableSetColumnFont Sets the font of a specified column.

XintEditTableSetColumnUserData Assigns user data to a specific column.

XintEditTableSetListBehavior Simulates the XmList behavior.

XintEditTableSetRowFont Sets the font of a specified row.

Function Name (continued) Description
EditTable Programming Guide 141

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 142 Thursday, January 22, 2009 12:29 PM
XintEditTableSetSelection Causes a specified range of cells, rows or
columns to be selected.

XintEditTableSortByColumn This functions allows the user to sort rows
in the specified column.

XintEditTableUndeleteColumns Causes the last column delete operation to
be reversed so that the columns are not
deleted.

XintEditTableUndeleteRows Causes the last row delete operation to be
reversed so that the rows are not deleted.

XintEditTableUnfreeze Unfreezes the table.

XintEditTableUpdateDataDisplay Causes the EditTable widget to update the
display of a cell, row or column.

Function Name (continued) Description
142 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 143 Thursday, January 22, 2009 12:29 PM
XintCreateEditTable
XintCreateEditTable creates an unmanaged EditTable widget.

Widget XintCreateEditTable (...)

XintEditTableAbandonEdit
This function cancels the editing of the current cell and restores the original cell value.
This function is called by action TextAbandonEdit.

void XintEditTableAbandonEdit (Widget widget)
where widget is the ID of an EditTable widget.

XintEditTableAddLocalCallback
This function adds a callback procedure that is local to a cell, row or column.

Boolean XintEditTableAddLocalCallback (...)

Widget parent Parent of new EditTable widget.

char * name Name of new EditTable widget.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.

Widget widget EditTable widget ID.

int column Column number (specify 0 to register the call-
back for all columns).

int row Row number (specify 0 to register the call-
back for all rows).

char * callback_name Callback name (must be a cell, row or column
callback defined by EditTable).

XtCallbackProc callback Callback procedure.

XtPointer client_data Client data for callback procedure.

int calling_sequence Specifies if local callback is called instead of,
before or after normal callbacks.
EditTable Programming Guide 143

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 144 Thursday, January 22, 2009 12:29 PM
The calling_sequence argument must be one of the following defined constants:

XintEditTableAddToSelection
This function adds a selection to the current selection. The selection can be specified
as a set of cells, columns or rows.

Boolean XintEditTableAddToSelection (...)

The selection_mode argument must be one of the following:

Defined Constant Description

XintLOCAL_CALLBACK_EXCLUSIVE Local callback is called instead of normal
callback.

XintLOCAL_CALLBACK_BEFORE Local callback is called before.

XintLOCAL_CALLBACK_AFTER Local callback is called after.

Widget widget EditTable widget ID.

int col_start Starting column number.

int num_cols Number of columns.

int row_start Starting row number.

int num_rows Number of rows.

int selection_mode Specifies if selection is for a set of cells, rows or
columns.

Defined Constant Description

XintSELECT_CELL Selection is a block of cells.

XintSELECT_ROW Selection is a set of rows.

XintSELECT_COLUMN Selection is a set of columns.
144 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 145 Thursday, January 22, 2009 12:29 PM
XintEditTableAssociateData
This function is only available when the EditTable widget is used in conjunction with
ChartObject. If you are not using ChartObject, you may want to ignore this function.
XintEditTableAssociateData provides a mechanism to associate a data object (usually
a DataGroup object) with an EditTable widget. This function handles a DataGroup
object as follows:
1. If a DataLabel object oriented along the X direction is found, it is used to provide

column annotation.
2. If a DataLabel object oriented along the Y direction is found, it is used to

provided row annotation.
3. Each DataSampled found is used to fill a column.

If one of the objects in the DataGroup has a range set, it is ignored. Only arguments
col_start and row_start are used to position the data inside the table.

Boolean XintEditTableAssociateData (...)

XintEditTableCellFlash
This function will make the specified cell flash at a specified rate (in unit
milliseconds), over a specified period of time (in unit seconds).

Boolean XintEditTableCellFlash (...)

The function returns False if the widget is not an EditTable widget or if the specified
cell is not in the visible table area.

Widget widget EditTable widget ID.

Object data Data object to associate with the table.

int col_start First column where to position the data.

int row_start First row where to position the data.

Boolean linked If True, the table is linked with the data object (i.e.: changes in
both the table and the data object are propagated to the other).
If False, no connection is established (data object is just used
to fill the table).

Widget widget EditTable widget ID.

int column Column location of the cell.

int row Row location of the cell.

long interval Flashing rate in unit milliseconds.

long duration Flashing time period in unit seconds

Pixel color Specifies the flashing color
EditTable Programming Guide 145

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 146 Thursday, January 22, 2009 12:29 PM
XintEditTableCellSpanGetRange
This function returns the cell span factor for the specified cell.

void XintEditTableCellSpanGetRange (...)

XintEditTableCellSpanSetRange
This function will set the cell span factor for all of the cells within the designated
row/column range.

void XintEditTableCellSpanSetRange (...)

XintEditTableChangeColumnVisibility
This function turns on or off the visibility of a range of columns.

Boolean XintEditTableChangeColumnVisibility (...)

Widget table EditTable widget ID.

int row Row location of the cell.

int column Column location of the cell.

XintCellSpanFactor * factor Pointer to the structure containing the span data.

Widget table EditTable widget ID.

int column First column in the range of columns to be selected.

int row First row in the range of rows to be selected.

int columns Number of columns in the range.
 0 = all columns following the starting column.

int rows Number of rows in the range.
 0 = all rows following the starting row.

XintCellSpanFactor * factor Pointer to the structure containing the span data.

Widget widget EditTable widget ID.

int col_start First column to update.

int col_end Last column to update.

Boolean visible True if column is to be made visible; False if col-
umn is to be made invisible (i.e., hidden).
146 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 147 Thursday, January 22, 2009 12:29 PM
XintEditTableChangeRowVisibility
This function turns on or off the visibility of a range of rows.

Boolean XintEditTableChangeRowVisibility (...)

XintEditTableClearAllSelections
This functions clears all existing selections.

Boolean XintEditTableClearAllSelections (Widget widget)

where widget is the ID of an EditTable widget. This functions returns True if there was
a selection prior to the call.

XintEditTableClearCells
This function clears the content of the specified cells.

Boolean XintEditTableClearCells (...)

XintEditTableClearSelectionByNumber
This function clears a specific selection. False is returned if selection_number is
invalid.

Boolean XintEditTableClearSelectionByNumber (...)

Widget widget EditTable widget ID.

int row_start First row to update.

int row_end Last row to update.

Boolean visible True if row is to be made visible; False if row is to
be made invisible (i.e., hidden).

Widget widget EditTable widget ID.

int col_start Starting column number.

int col_end Ending column number.

int row_start Starting row number.

int row_end Ending row number.

Widget widget EditTable widget ID.

int selection_number Number of the selection to clear.
EditTable Programming Guide 147

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 148 Thursday, January 22, 2009 12:29 PM
XintEditTableColumnScroll
This function causes an EditTable widget to scroll the displayed table.

void XintEditTableColumnScroll (...)

The operation argument must be one of the following:

XintEditTableConfirmEdit
This function allows the confirmation of the editing of the current cell and the
invocation of the callback XmNvalidateValueCallback. This function is invoked by
action TextConfirmEdit.

void XintEditTableConfirmEdit (Widget widget)
where widget is the ID of an EditTable widget.

XintEditTableCopyColumn
This function copies a specified column to the EditTable widget’s clipboard.

Boolean XintEditTableCopyColumn (...)

This function returns False if the column index is out of range. Otherwise, it returns
True.

Widget widget EditTable widget ID.

int operation Specifies the direction and amount of scrolling.

Defined Constant Description

XintDECREMENT Scroll one column left.

XintINCREMENT Scroll one column right.

XintPAGE_DECREMENT Scroll one page left.

XintPAGE_INCREMENT Scroll one page right.

XintTO_FIRST Scroll back to the first column.

XintTO_LAST Scroll to the last column.

Widget widget EditTable widget ID.

int column Column index.
148 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 149 Thursday, January 22, 2009 12:29 PM
XintEditTableCopyRows
This function copies a specified range of rows to the EditTable widget’s clipboard.

Boolean XintEditTableCopyRows (...)

XintEditTableDefineColumnFormat
This function defines the attributes of a specified column.

Boolean XintEditTableDefineColumnFormat (...)

Widget widget EditTable widget ID.

int row Row index of the first row to copy.

int num_rows Number of rows to copy including the first row.

Widget widget EditTable widget ID.

int column Column index.

int edit_mode Specify whether the cells in the column are editable by using
one of the following defined constants:
XintCOLUMN_EDITABLE or
XintCOLUMN_NON_EDITABLE.

int alignment Specify the alignment of the values in the cells of the column
using one of the defined constants below.

int max_char The width of the column in terms of the number of characters
displayed in a cell.

int data_type Specify the data type of the values in the cells of the column
using one of the defined constants below.

char * data_format Specify the format of the values in the cells of the column
using a character string containing a C language format
descriptor (such as “%d”) NOTE: the data format must be con-
sistent with the data type. Specify NULL if you want to format
the cells in the column yourself using callback XmNformat-
CellCallback. This format descriptor is ignored for pointer data
in which case callback
XmNformatCellCallback is always called.
EditTable Programming Guide 149

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 150 Thursday, January 22, 2009 12:29 PM
Specify constant XintCOLUMN_DEFAULT if you want the EditTable to use the
default value for one of the integer arguments above. The alignment argument can
be one of the following:

The data_type can be one of the following:

Function XintEditTableGetColumnAttrinutes retrieves column attributes.

Resource Value Description

XintALIGNMENT_BEGINNING_TOP Value to be justified in upper left hand cor-
ner of the cell.

XintALIGNMENT_CENTER_TOP Value to be justified horizontally in center of
cell and vertically at top of cell.

XintALIGNMENT_END_TOP Value to be justified in upper right hand
corner of cell.

XintALIGNMENT_BEGINNING_MIDDLE Value to be justified horizontally at left side
of cell and vertically in center of cell.

XintALIGNMENT_CENTER_MIDDLE Value to be justified horizontally at center of
cell and vertically in center of cell.

XintALIGNMENT_END_MIDDLE Value to be justified horizontally at right side
of cell and vertically in center of cell.

XintALIGNMENT_BEGINNING_BOTTOM Value to be justified in lower left hand cor-
ner of cell.

XintALIGNMENT_CENTER_BOTTOM Value to be justified horizontally in center of
cell and vertically at bottom of the cell.

XintALIGNMENT_END_BOTTOM Value is to be justified in lower right hand
corner of cell.

Defined Constant Description

XintTYPE_DOUBLE Values are double precision floating point numbers.

XintTYPE_FLOAT Values are single precision floating point numbers.

XintTYPE_INTEGER Values are integer numbers.

XintTYPE_LONG_INTEGER Values are long integer numbers.

XintTYPE_SHORT Values are short integer numbers.

XintTYPE_STRING Values are character strings.

XintTYPE_POINTER Values are pointers.
150 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 151 Thursday, January 22, 2009 12:29 PM
XintEditTableDeleteColumns
This function deletes a specified range of columns from a table. The deleted columns
are copied to the EditTable Widget’s clipboard so that they can be undeleted if
necessary.

Boolean XintEditTableDeleteColumns (...)

This function returns False if the starting column index or number of columns is out of
range. Otherwise, it returns True.

XintEditTableDeleteRows
This function deletes a specified range of rows from a table. The deleted rows are
copied to the EditTable Widget’s clipboard so that they can be undeleted if necessary.

Boolean XintEditTableDeleteRows (...)

This function returns False if the starting row index or number of rows is out of range.
Otherwise, it returns True.

XintEditTableFillCell
This function stores a value into a cell and updates the display.

Boolean XintEditTableFillCell (...)

This function returns False if the column index or row index is out of range or if the
data_address is NULL. Otherwise, it returns True. This function will not work for the
cell that is being edited. Use the resource XmNvalidateValueCallback to define a
callback procedure that changes the value of the cell being edited.

Widget widget EditTable widget ID.

int column Index of the first column to delete.

int num_columns Number of columns to delete.

Widget widget EditTable widget ID.

int row Index of the first row to delete.

int num_rows Number of rows to delete.

Widget widget EditTable widget ID.

int column Index of the column containing the cell.

int row Index of the row containing the cell.

XtPointer data_address Address of the value for the cell (if data type is
XintTYPE_POINTER, pass pointer value directly).
EditTable Programming Guide 151

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 152 Thursday, January 22, 2009 12:29 PM
You can use this function to set the annotation for a row in the table by specifying
the defined constant XintROW_ANNOTATION for the value of column and setting
data_address to the address of the memory space containing the new row annotation.

Warning: This function is slow and should not be used to update a whole table or
a large portion a table. Use XintEditTableFillCellNoUpdate instead.

XintEditTableFillCellNoUpdate
This function is similar to XintEditTableFillCell except that it does not update the
display. This function is designed for cases where the application needs to update a
large number of cells as fast as possible. After all the cells have been filled, the
application needs to call function XintEditTableUpdateDataDisplay, with both row
and column arguments set to XintUPDATE_ALL, to update the EditTable display.

Boolean XintEditTableFillCellNoUpdate (...)

This function returns False if the column index or row index is out of range or if the
data_address is NULL. Otherwise, it returns True. This function will not work for
the cell that is being edited. Use the resource XmNvalidateValueCallback to define
a callback procedure that changes the value of the cell being edited.

Widget widget EditTable widget ID.

int column Index of the column containing the cell.

int row Index of the row containing the cell.

XtPointer data_address Address of the value for the cell (if data type is
XintTYPE_POINTER, pass pointer value directly).
152 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 153 Thursday, January 22, 2009 12:29 PM
XintEditTableFillColumnAnnotation
This function sets the annotation character string for a specified column.

Boolean XintEditTableFillColumnAnnotation (...)

This function returns False if column is out of range or if the column specified is
frozen. Otherwise, it returns True.

XintEditTableFillColumnData
This function sets the values of every cell in a specified column. The values are
specified by an array that must be the same size as the specified column and be of the
same data type as the column.

Boolean XintEditTableFillColumnData (...)

This function returns False if the column index is out of range or if data_array is
NULL. Otherwise, it returns True.

You can use this function to set the annotation for every row in the table by specifying
the defined constant XintROW_ANNOTATION for the value of column and putting
the row annotation strings in data_array.

XintEditTableFreezeColumn
This function freezes a specified column. This function is only effective when the
parent of the EditTable widget is an INT Scroll widget.

Boolean XintEditTableFreezeColumn (...)

Widget widget EditTable widget ID.

int column Index of the column whose annotation is to be
changed.

char * annotation_string Character string containing the annotation for the
column.

Widget widget EditTable widget ID.

int column Index of the column whose values are to be changed.

XtPointer data_array Array containing the new values for the cells in the speci-
fied column.

Widget widget EditTable widget ID.

int column Index of the column to be frozen.
EditTable Programming Guide 153

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 154 Thursday, January 22, 2009 12:29 PM
This function returns False if the column number is out of range, if the column is
already frozen or if the parent of widget is not an INT Scroll widget. Otherwise, it
returns True.

XintEditTableFreezeRow
This function freezes a specified row. This function is only effective when the parent
of the EditTable widget is an INT Scroll widget.

Boolean XintEditTableFreezeRow (...)

This function returns False if the row number is out of range, if the row is already
frozen or if the parent of widget is not an INT Scroll widget. Otherwise, it returns
True.

XintEditTableFreezeUpdate
This function is a convenience function that sets the value of resource
XmNfreezeUpdate. Resource XmNfreezeUpdate when set to True will disable all
geometry updates and redisplay operations while an application is performing a
series of changes on the table. After the changes are completed, resource
XmNfreezeUpdate should be set back to False so that the table can automatically
recalculate its new geometry and redisplay itself.

Boolean XintEditTableFreezeUpdate (...)

XintEditTableGetCellBackground
This function returns the background color of a specified cell (as a pixel value).

Pixel XintEditTableGetCellBackground (...)

This function returns the color used for the background of the specified cell as a pixel
value.

Widget widget EditTable widget ID.

int row Index of the row to be frozen.

Widget widget EditTable widget ID.

Boolean state True to freeze updates, False to calculate new
geometry and redisplay.

Widget widget EditTable widget ID.

int column Index of the column.

int row Index of the row.
154 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 155 Thursday, January 22, 2009 12:29 PM
XintEditTableGetCellData
Returns a pointer to a copy of the value in a specified cell. You should free the memory
used by the copy of the value after you have finished with it.

XtPointer XintEditTableGetCellData (...)

Returns NULL if the column index or row index is out of range or if the value of the
cell is undefined. Otherwise, it returns a pointer to a copy of the cell’s value, unless the
value is a pointer type. In the case of a pointer type, e.g., String, the pointer itself is
returned (and it points to the original cell value).

XintEditTableGetCellFont
Returns the index of the font used by the specified cell.

int XintEditTableGetCellFont (...)

Returns XintUNDEFINED_INTEGER if the row or column specification is out of
range or if the font index assigned to the cell was not valid.

XintEditTableGetCellForeground
Returns the foreground color of a specified cell (as a pixel value).

Pixel XintEditTableGetCellForeground (...)

Returns the pixel value used to paint the foreground of the specified cell.

Widget widget EditTable widget ID.

int column Index of the column containing the cell.

int row Index of the row containing the cell.

Widget widget EditTable widget ID.

int column Index of the column.

int row Index of the row.

Widget widget EditTable widget ID.

int column Index of the column.

int row Index of the row.
EditTable Programming Guide 155

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 156 Thursday, January 22, 2009 12:29 PM
XintEditTableGetCellGeometry
Returns the position and size in pixels coordinates of a cell relative to the upper left
corner of the EditTable widget window.

Boolean XintEditTableGetCellGeometry (...)

Returns False if the specified cell is out of range.

XintEditTableGetCellHeight
Returns the height of the specified cell in the unit system specified by resource
XmNcellSizeUnit. Note that all the cells in a defined row (column if table is
transposed) have the same height.

Boolean XintEditTableGetCellHeight (...)

Returns False if the index specified is out of range.

XintEditTableGetCellPixmap
Returns the pixmap ID used for the background of the specified cell.

Pixmap XintEditTableGetCellPixmap (...)

Returns XintUNDEFINED_PIXMAP if no pixmap is assigned to that cell or if the
cell specification is out of range.

Widget widget EditTable widget ID.

int column Index of the column.

int row Index of the row.

int * x Returns the X-coordinate of the cell.

int * y Returns the Y-coordinate of the cell.

int * width Returns the cell’s width in pixels.

int * height Returns the cell’s height in pixels.

Widget widget EditTable widget ID.

int index Index of the row (column if table is transposed)
containing the cell.

int * height Returns the height of the cell.

Widget widget EditTable widget ID.

int column Index of the column.

int row Index of the row.
156 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 157 Thursday, January 22, 2009 12:29 PM
XintEditTableGetCellPointerPosition
This function can be used to query the location of the cell pointer. It returns False it the
cell pointer is not active.

Boolean XintEditTableGetCellPointerPosition (...)

XintEditTableGetCellWidget
Returns the cell widget associated with a particular cell location. If no widget is
associated with the cell, the function returns NULL.

Widget XintEditTableGetCellWidget (...)

XintEditTableGetCellWidth
Returns the width of the specified cell in the unit system specified by resource
XmNcellSizeUnit. Note that all the cells in a defined column (row if table is
transposed) have the same width.

Boolean XintEditTableGetCellWidth (...)

Returns False if the index specified is out of range.

Widget widget EditTable widget ID.

int * column Returns the index of the column where the cell
pointer is located.

int * row Returns the index of the row where the cell
pointer is located.

Widget table EditTable widget ID.

int column The index of the column location of the cell widget.

int row The index of the row location of the cell widget.

Widget widget EditTable widget ID.

int index Index of the column (row if table is trans-
posed) containing the cell.

int * width Returns the width of the cell.
EditTable Programming Guide 157

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 158 Thursday, January 22, 2009 12:29 PM
XintEditTableGetColumnAnnotationAlignment
Returns the annotation alignment for a specific column.

Boolean XintEditTableGetColumnAnnotationAlignment(...)

Returns False if widget is not a valid EditTable widget or if column is out of range.
Returns True otherwise.

XintEditTableGetColumnAttributes
Obtains the attributes of a a specified column. If one or more of the attributes is of
no interest to you, then set the corresponding argument to NULL.

Boolean XintEditTableGetColumnAttributes (...)

The edit_mode is returned as one of the following:

Widget widget Widget ID of the EditTable.

int col Column number to retrieve the annotation align-
ment.

int * annot_align Pointer to annotation alignment for col.

Widget widget EditTable widget ID.

int column Column index.

int * size Returns number of cells in the column.

int * edit_mode Returns column edit mode as one of defined integer constants
below.

int * alignment Returns column alignment as one of defined integer constants
below.

int * width Returns width of the column in unit system specified by
resource XmNcellSizeUnit.

int * data_type Returns data type of the values in the cells of column as one
of defined constants below.

char ** data_format Returns format of the values in cells of column using charac-
ter string containing a C language format descriptor (such as
“%d”).

char ** annotation_string Returns character string that annotates column.

Defined Constant Description

XintCOLUMN_EDITABLE Indicates values in cells of column are editable.

XintCOLUMN_NON_EDITABLE Indicates values in cells of column are not editable.
158 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 159 Thursday, January 22, 2009 12:29 PM
The data_type is returned as one of the following:

The alignment is returned as one of the following:

To set the column attributes, use XintEditTableDefineColumnFormat.

Defined Constant Description

XintTYPE_DOUBLE Values are double precision floating point numbers.

XintTYPE_FLOAT Values are single precision floating point numbers.

XintTYPE_INTEGER Values are integer numbers.

XintTYPE_LONG_INTEGER Values are long integer numbers.

XintTYPE_SHORT Values are short integer numbers.

XintTYPE_STRING Values are character strings.

XintTYPE_POINTER Values are pointers.

Resource Value Description

XintALIGNMENT-_BEGINNING_TOP Value to be justified in upper left hand corner of
cell.

XintALIGNMENT_CENTER_TOP Value in each cell to be justified horizontally in
center of cell and vertically at top of cell.

XintALIGNMENT_END_TOP Value in each cell to be justified in upper right
hand corner of cell.

XintALIGNMENT_BEGINNING_ MIDDLE Value in each cell to be justified horizontally at
left side of the cell and vertically in center of
cell.

XintALIGNMENT_CENTER_MIDDLE Value in each cell to be justified horizontally at
center of cell and vertically in center of cell.

XintALIGNMENT_END_MIDDLE Value in each cell to be justified horizontally at
right side of cell and vertically in center of cell.

XintALIGNMENT_BEGINNING_ BOTTOM Value in each cell to be justified in lower left
hand corner of cell.

XintALIGNMENT_CENTER_BOTTOM Value in each cell to be justified horizontally in
center of cell and vertically at bottom of cell.

XintALIGNMENT_END_BOTTOM Value in each cell to be justified in lower right
hand corner of cell.
EditTable Programming Guide 159

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 160 Thursday, January 22, 2009 12:29 PM
XintEditTableGetColumnData
This function gets a copy of the values of every cell in a specified column. The
values are returned in an array that you should free when you have finished with it.

XtPointer XintEditTableGetColumnData (...)

Returns NULL if the column index is out of range or if the column contains no data.
Otherwise, it returns the address of the array.

XintEditTableGetColumnUserData
Returns a pointer to the column’s user data.

XtPointer XintEditTableGetColumnUserData (...)

XintEditTableGetFrozenColumns
Returns an integer array containing the column indices of the columns currently
frozen in a table. The column indices are returned in an array that you should free
when you are finished with it.

int * XintEditTableGetFrozenColumns (...)

Returns NULL if there are no frozen columns. Otherwise, it returns a pointer to the
array of frozen column indices.

Widget widget EditTable widget ID.

int column Index of the column whose values are to be returned.

int * size Returns the number of elements in the array.

Widget widget EditTable widget ID.

int column Index of the column whose user data is to be retrieved.

Widget widget EditTable widget ID.

int * num_cols Returns the number of columns in the frozen list.
160 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 161 Thursday, January 22, 2009 12:29 PM
XintEditTableGetFrozenRows
Returns an integer array containing the row indices of the rows currently frozen in a
table. The row indices are returned in an array that you should free when you are
finished with it.

int * XintEditTableGetFrozenRows (...)

Returns NULL if there are no frozen rows. Otherwise, it returns a pointer to the array
of frozen row indices.

XintEditTableGetHiddenColumns
Returns the list of the columns which are currently not visible.

int * XintEditTableGetHiddenColumns (...)

Argument num_cols is a pointer to an integer value, which contains on return the
number of hidden columns. The function returns an array that contains the indices of
the hidden columns or NULL if all the columns are visible. The array must be
deallocated by the application after it is no longer needed.

XintEditTableGetHiddenRows
Returns the list of the rows which are currently not visible.

int * XintEditTableGetHiddenRows (...)

Argument num_rows is a pointer to an integer value, which contains on return the
number of hidden rows. The function returns an array that contains the indices of the
hidden rows or NULL if all the rows are visible. The array must be deallocated by the
application after it is no longer needed.

Widget widget EditTable widget ID.

int * num_rows Returns the number of rows in the frozen list.

Widget widget EditTable widget ID.

int * num_cols Returns the number of hidden columns.

Widget widget EditTable widget ID.

int * num_rows Returns the number of hidden rows.
EditTable Programming Guide 161

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 162 Thursday, January 22, 2009 12:29 PM
XintEditTableGetSelectedCells
Returns information regarding the selected cells.

Boolean XintEditTableGetSelectedCells(...)

The function returns False if no selection exists. Otherwise it returns True.

XintEditTableGetSelectedColumns
Returns information regarding the selected columns.

Boolean XintEditTableGetSelectedColumns(...)

The function returns False if no selection exists. Otherwise it returns True.

XintEditTableGetSelectedRows
Returns information regarding the selected rows.

Boolean XintEditTableGetSelectedRows(...)

The function returns False if no selection exists. Otherwise it returns True.

Widget widget EditTable widget ID.

int* col_start The column start value for the selection.

int* row_start The row start value for the selection.

int* cols The number of columns in the selection.

int * rows The number of rows in the selection.

Widget widget EditTable widget ID.

int* col_start The column start value for the selection.

int * cols The number of columns in the selection.

Widget widget EditTable widget ID.

int* row_start The row start value for the selection.

int * rows The number of rows in the selection.
162 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 163 Thursday, January 22, 2009 12:29 PM
XintEditTableGetSelectionByNumber
Returns information regarding the specified selection. Selection numbers are positive
integers which are assigned automatically by the EditTable widget. In case of a single
selection, the selection_number should be set to 1. Otherwise, for a multiple selection,
valid values are between 1 and the number returned by function
XintEditTabelGetSelectionCount.

Boolean XintEditTableGetSelectionByNumber (...)

The function returns False if selection_number is invalid, or if no selection exists.
Otherwise it returns True. The selection_mode is returned as one of the following
constants:

XintEditTableGetSelectionCount
Returns the number of current selections.

int XintEditTableGetSelectionCount (Widget widget)

where widget is the widget ID of an EditTable widget. The functions returns the
number of selections currently defined. Returns 0 if there are no current selections.

Widget widget EditTable widget ID.

int selection_number Number of the selection for which we want
information.

int * col_start The column start value for selection.

int * num_cols The number of columns in selection.

int * row_start The row start value for the selection.

int * num_rows The number of rows in the selection.

int * selection_mode The type of the selection.

Defined Constant Description

XintSELECT_CELL Selection is a block of cells.

XintSELECT_ROW Selection is a set of rows.

XintSELECT_COLUMN Selection is a set of columns.

XintSELECT_NONE No selection exists.
EditTable Programming Guide 163

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 164 Thursday, January 22, 2009 12:29 PM
XintEditTableGetTextChild
Returns the ID of the text widget used to edit a cell. Editing is done using a floating
text widget that is mapped when the user starts entering text. There are up to four text
widgets, one for the main table, one for the frozen column area, one for the frozen
row area and one for the area intersecting the frozen rows and columns.

Widget XintEditTableGetTextChild (...)

where widget is the widget ID of an EditTable widget and child is a constant, from
the table below, which refers to one of the EditTable text widgets. The function
returns the widget ID of the specified text widget.

Widget widget EditTable widget ID.

int child Code referring to one of the text widgets in the EditTable widget.

Defined Constant Description

XintEDIT_TABLE_MAIN_TEXT Refers to the text widget used in the
main table.

XintEDIT_TABLE_FROZEN_COLUMN_TEXT Refers to the text widget used to edit
frozen columns.

XintEDIT_TABLE_FROZEN_ROW_TEXT Refers to the text widget used to edit
frozen rows.

XintEDIT_TABLE_FROZEN_CELLS_TEXT Refers to the text widget used to edit
frozen cells (intersection of frozen rows
and frozen columns).
164 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 165 Thursday, January 22, 2009 12:29 PM
XintEditTableGetSubtable
Returns the ID of one of the subtable widgets. A subtable may or may not exist so you
should check the returned widget ID to ensure that it is not NULL.

Widget XintEditTableGetSubtable (...)

The function returns the widget ID of the specified subtable if it exists. Argument
subtable_code is specified as one of the following constants:

XintEditTableGetVisibleArea
This function passes back the visible area of the table through its argument list. The
visible area of the table starts from the first_column (the leftmost column) to the
last_column (the rightmost column) and from the first_row (the top row) to the
last_row (the bottom row).

Boolean XintEditTableGetVisibleArea (...)

Returns False if the widget argument is not an EditTable widget. Otherwise, it returns
True.

Widget widget EditTable widget ID.

int subtable_code Code referring to one of the subtables in the EditTa-
ble widget.

Defined Constant Description

XintEDIT_TABLE_FROZEN_
COLUMN_SUBTABLE

Refers to the subtable of frozen columns.

XintEDIT_TABLE_FROZEN_ROW_
SUBTABLE

Refers to the subtable of frozen rows.

XintEDIT_TABLE_FROZEN_INTER
SECTION_ SUBTABLE

Refers to the subtable in the intersection of the
frozen rows and columns.

XintEDIT_TABLE_MAIN_SUBTABLE Refers to the subtable of non-frozen cells.

Widget widget EditTable Widget ID.

int * first_column Returns the index of the first (leftmost) column.

int * last_column Returns the index of the last (rightmost) column.

int * first_row Returns the index of the first (top) row.

int * last_row Returns the index of the last (bottom) row.
EditTable Programming Guide 165

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 166 Thursday, January 22, 2009 12:29 PM
XintEditTableInsertColumns
This function inserts one or more empty columns before a specified column. You can
specify an array of character strings for the new column annotations or specify
NULL for new columns with no annotations. Specify 0 for the column index to have
the new columns inserted at the end of the table.

Boolean XintEditTableInsertColumns (...)

Returns False if the specified column index is out of range. Otherwise, it returns
True.

XintEditTableInsertRows
This function inserts one or more empty rows before a specified row. Specify 0 for
the row index to cause the new rows to be inserted at the end of the table.

Boolean XintEditTableInsertRows (...)

Returns False if the specified row index is out of range. Otherwise, it returns True.

XintEditTableIsCellDefined
Returns True if the specified cell is within the table and if its content has been
initialized.

Boolean XintEditTableIsCellDefined (...)

Widget widget EditTable widget ID.

int column The column index of the column before which the columns will
be inserted.

int num_cols The number of empty columns to be inserted.

char ** annotation Pointer to an array of character strings each of which contains the
annotation for one of new columns.

Widget widget EditTable widget ID.

int row The row index of the row before which the new rows will
be inserted.

int num_rows The number of rows to be inserted.

Widget widget EditTable widget ID.

int column The column index of the cell of interest.

int row The row index of the cell of interest.
166 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 167 Thursday, January 22, 2009 12:29 PM
XintEditTableIsColumnFrozen
Returns True if the specified column is frozen.

Boolean XintEditTableIsColumnFrozen (...)

XintEditTableIsRowFrozen
Returns True if the specified row is frozen.

Boolean XintEditTableIsRowFrozen (...)

XintEditTableIsColumnHidden
Returns True if the specified column is hidden. A column is hidden by calling function
XintEditTableChangeColumnVisibility with the visible argument set to False.

Boolean XintEditTableIsColumnHidden (...)

XintEditTableIsRowHidden
Returns True if the specified row is hidden.A row is hidden by calling function
XintEditTableChangeRowVisibility with the visible argument set to False.

Boolean XintEditTableIsRowHidden (...)

Widget widget EditTable widget ID.

int column The index of the column of interest.

Widget widget EditTable widget ID.

int row The index of the row of interest.

Widget widget EditTable widget ID.

int column The index of the column of interest.

Widget widget EditTable widget ID.

int row The index of the row of interest.
EditTable Programming Guide 167

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 168 Thursday, January 22, 2009 12:29 PM
XintEditTableOutputAscii
This function creates an ASCII output file that contains the values in a range of cells.
You must specify a delimiter to be inserted between the values in a row.

Boolean XintEditTableOutputAscii (...)

Returns False if the file is not opened successfully or if any of the row or column
indices are out of range. Otherwise, it returns True. Refer to
“XintEditTableReadAscii” on page 175 for a description of the ASCII file format.

XintEditTableOutputPostscript
This function creates a PostScript output file that contains the values in a range of
specified cells.

Boolean XintEditTableOutputPostscript (...)

Widget widget EditTable widget ID.

char * filename Character string specifying the output file name.

int col_start Column index of the first column containing cell values to be
output.

int col_end Column index of the last column containing cell values to be
output.

int row_start Row index of the first row containing cell values to be output.

int row_end Row index of the last row containing cell values to be output.

char delimiter Character to be inserted between values in a row (e.g. ‘,‘).

Widget widget EditTable widget ID.

char * filename Character string specifying the output file name.

int color_mode Specify XintMONOCHROME for a black and white printer
and XintCOLOR for a color printer.

float scale Specifies the scale factor for the output image

int col_start Column index of the first column containing cell values to
be output.

int col_end Column index of the last column containing cell values to be
output.

int row_start Row index of the first row containing cell values to be out-
put.

int row_end Row index of the last row containing cell values to be output.
168 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 169 Thursday, January 22, 2009 12:29 PM
The scale argument in the function call specifies the scaling that will be applied to the
table to produce the output hardcopy display. A value of zero (0) causes the total set
of selected cells to be scaled to fit the page. This means that all of the cells in the range
of col_start to col_end and row_start to row_end will be displayed on a single sheet
of paper. A value of one (1) causes the output cells to be displayed at their screen size.
If a cell measures 1-inch by 3-inches on the screen, it will have those same dimensions
on the output display. In general (and depending on the number of cells defined by the
column and row ranges), a scale value of 1 will generate more than one page of output.
Larger scale values create proportionately greater than screen size displays; while
values between 0 and 1 cause the display to be scaled to less than screen size.
Remember that the range of cells to be displayed may be significantly greater than the
amount of the table that is visible in the viewport on the screen.

Returns False if the file is not opened successfully or if any of the row or column
indices are out of range. Otherwise, it returns True.

The XintOutputPostscript function provides a more general hardcopy capability for
any widget instance derived from the CompBase widget class. It is described in that
section.

XintEditTableOutputSimplePS
This function generates Postscript output, ignoring all font specifiers, and using only
Courier-10.

Boolean XintEditTableOutputSimplePS (...)

Returns False if the file is not opened successfully or if any of the row or column
indices are out of range. It also returns False if widget is not a valid EditTable widget,
otherwise, it returns True.

Widget widget EditTable widget ID.

char * filename Character string specifying the output PostScript file name.

int orientation Orientation of output. Use the constant of either
XintORIENTATION_LANDSCAPE or
XintORIENTATION_PORTRAIT.

int start_column Starting column for output to PostScript.

int end_column Ending column for output to PostScript.

int start_row Starting row for output to PostScript.

int end_row Ending row for output to PostScript.
EditTable Programming Guide 169

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 170 Thursday, January 22, 2009 12:29 PM
XintEditTableOutputSimplePS2
This function generates Postscript output, using all fonts and alignments set up in the
EditTable. If the scale is set to 0, the output will be fitted to one page.

Boolean XintEditTableOutputSimplePS2 (...)

Returns False if the file is not opened successfully or if any of the row or column
indices are out of range. It also returns False if widget is not a valid EditTable widget,
otherwise, it returns True.

XintEditTableOutputSylkFile
Creates a SYLK formatted output file that contains the values in a range of specified
cells. You can specify a font on the machine the SYLK file will be used on.
Alternatively, specify NULL to use the default font.

Boolean XintEditTableOutputSylkFile (...)

Returns False if the file is not opened successfully or if any of the row or column
indices are out of range. Otherwise, it returns True.

Widget widget EditTable widget ID.

char * filename Character string specifying the output PostScript file name.

int orientation Orientation of output. Use the constant of either
XintORIENTATION_LANDSCAPE or
XintORIENTATION_PORTRAIT.

double scale Scale to use for output to PostScript. Using a scale of 0 will
fit the output EditTable to one page.

int start_column Starting column for output to PostScript.

int end_column Ending column for output to PostScript.

int start_row Starting row for output to PostScript.

int end_row Ending row for output to PostScript.

Widget widget EditTable widget ID.

char * filename Character string specifying output file name.

int col_start Column index of first column containing cell values to output.

int col_end Column index of last column containing cell values to output.

int row_start Row index of first row containing cell values to output.

int row_end Row index of last row containing cell values to output.

char * font_name Character string specifying name of font to use in output file.
170 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 171 Thursday, January 22, 2009 12:29 PM
XintEditTablePasteColumns
This function copies the columns currently on the EditTable widget’s clipboard into
the columns of the table starting at a specified column. You must specify whether a
data type conversion will or will not be performed when the data is pasted from the
clipboard to the specified column. If no conversion is specified and the column types
are not compatible (e.g. trying to paste strings into a floating point column), then no
operation is performed and the function returns False.

Boolean XintEditTablePasteColumns (...)

where conversion is specified as one of the following:

Returns False if specified column index is out of range or a data type mismatch occurs when
conversion set to XintNO_CONVERSION. Otherwise, returns True.

XintEditTablePSReportStyle
This function generates a postscript formatted report.

Boolean XintEditTablePSReportStyle (...)

Widget widget EditTable widget ID.

int column The column index of the column whose values will be replaced
by the values of the column on the clipboard.

int conversion Specify the type of conversion performed on the data by using
one of the defined integer constants below.

Defined Constant Description

XintCONVERSION Indicates that the values should be converted (e.g. “123”
becomes the integer value 123).

XintNO_CONVERSION Indicates that no conversion is to be performed. Function will
return False on data type mismatch.

XintTYPE_CAST Indicates that the values should be type cast (e.g. “123”
becomes (int) “123”).

Widget table EditTable widget ID.

EditTableReportRange * range Pointer to EditTableReportRange structure that
specifies the range to be generated.

EditTableReportLayout * layout Pointer to EditTableReportLayout structure that
specifies the layout of the report.

EditTableReportAttributes * attributes Pointer to EditTableReportAttributes that speci-
fies the page attributes of the report.

char * filename The output file name.
EditTable Programming Guide 171

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 172 Thursday, January 22, 2009 12:29 PM
Returns False if the widget is not an EditTable widget or if there exist s a column/row
whose width/height is greater than the page width or page height. It is the
programmer’s responsibility to free the parameters (range, layout, attributes) after
completion.

The structures used by this function are as follows:
typedef struct {

 int column_start, column_end, row_start, row_end;

} EditTableReportRange;

where the structure variables are:

column_start Starting column in the range of cells.

column_end Ending column in the range of cells.

row_start Starting row in the range of cells.

row_end Ending row in the range of cells.
typedef struct {

 int orientation, processing_direction;

} EditTableReportLayout;

where the structure variables are:

orientation Specifies the orientation of the page. The user can specify any
one of the constants shown in the first Constants table below.

processing_direction Specifies the page stacking order. The user can specify any
one of the constants shown in the second Constants table below.

Defined Constant Description

XintORIENTATION_PORTRAIT Specifies the portrait orientation.

XintORIENTATION_LANDSCAPE Specifies the landscape orientation.

XintFROM_L_TO_R Specifies to process the table from left to right
(process the table in terms of columns).

XintFROM_T_TO_B Specifies to process the table from top to bottom
(process the table in terms of rows).
172 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 173 Thursday, January 22, 2009 12:29 PM
typedef struct {

 int show_on_page;
 String string;
 String font;
 int placement;
 int alignment;

} FieldAttr;

typedef struct {

 FieldAttr title;
 FieldAttr horz_annotation;
 FieldAttr vert_annotation;
 FieldAttr page_number;
 String table_text_font;
 int table_text_alignment;

} EditTableReportAttributes;

where the variables of structure FieldAttr are:

show_on_page Indicates whether to show on every page or just the front page. The
user can specify one of the constants in the Constants table below.

string The actual string in the report.

font The actual font string to be used in the report.

placement Specifies the placement of the EditTableReportAttributes members.
The user can specify one of the constants in the Constants table
below

alignment Specifies the alignment of the EditTableReportAttributes members.
The user can specify one of the constants in the Constants table
below.
EditTable Programming Guide 173

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 174 Thursday, January 22, 2009 12:29 PM
The constants available for members of the FieldAttr structure are:

Defined Constant Description

XintALL_PAGES Constant value for show_on_page variable in structure
FieldAttr. Indicates the user wishes to show attribute on all
pages in the report.

XintFRONT_PAGE_ONLY Constant value for show_on_page variable in structure
FieldAttr. Indicates the user wishes to show attribute on
front page only.

XintPLACEMENT_NONE Constant value for placement variable. Indicates not to
place the attribute on page.

XintPLACEMENT_TOP Constant value for placement variable. Indicates to
place the attributes above the report content.

XintPLACEMENT_BOTTOM Constant value for placement variable. Indicates to
place the attributes below the report content.

XintPLACEMENT_TOP_BOTTOM Constant value for placement variable. Indicates to
place the attributes both above and below the report
content.

XintPLACEMENT_LEFT Constant value for placement variable. Indicates to
place the attributes to the left of the report content.

XintPLACEMENT_RIGHT Constant value for placement variable. Indicates to
place the attributes to the right of the report content.

XintPLACEMENT_LEFT_RIGHT Constant value for placement variable. Indicates to
place the attributes both left and right of the report con-
tent.

XintALIGNMENT_BEGINNING Constant value for alignment variable. Indicates to align
the string starting from the left border of a cell.

XintALIGNMENT_CENTER Constant value for alignment variable. Indicates to align
the string at the center of a cell

XintALIGNMENT_END Constant value for alignment variable. Indicates to align
the string ending at the right border of a cell
174 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 175 Thursday, January 22, 2009 12:29 PM
The following table lists the variables of structure EditTableReportAttribute:

XintEditTablePasteRows
This function copies the rows currently on the EditTable widget’s clipboard into the
rows of the table starting at a specified row.

Boolean XintEditTablePasteRows (...)

Returns False if the specified row index is out of range.

XintEditTableReadAscii
This function reads data from an ASCII file into the EditTable widget. The EditTable
automatically converts the string data into the data type value of each column. If the
conversion fails for a cell, the cell will be left unchanged. Set the column data type to
XintTYPE_STRING to have no conversion performed (refer
to“XmNdefaultColumnDataType” on page 96 and “XmNcolumnDataTypeData” on
page 95 for more information).

Boolean XintEditTableReadAscii (...)

Variable Description

title Title specification.

horz_annotation Specifies the horizontal annotations.

vert_annotation Specifies the vertical annotations,

page_number Page number specification.

table_text_font Specifies the text font for the report, if other than the default
table font.

table_text_alignment Specifies the text alignment for the report, if other than the
default table text alignment.

Widget widget EditTable widget ID.

int row The row index of the row where the paste will begin.

Widget widget EditTable widget ID.

char * filename The name of the ASCII file.

Boolean resize EditTable widget resizes itself to match size of input dataset if
resize is True. Otherwise, table size remains unchanged. In that
case, if the dataset is larger than the table, the extra values are
ignored, and if the table is larger than the dataset, the remaining
table cells will be left unchanged.
EditTable Programming Guide 175

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 176 Thursday, January 22, 2009 12:29 PM
Returns False if it cannot open the specified file.

Each line in the ASCII file corresponds to a row in the table. The default delimiter
is a tab. If no tab is found in the first line, the widget will try a comma as the
delimiter. If no comma is found, it will try a space. You can also explicitly specify
the character to use as the delimiter by inserting the following command at the
beginning of the file:

#DELIMITER = ‘delimiter’

where delimiter is the character to use as the delimiter. The file format supports
missing values. A missing value is simply omitted and its following delimiter is
supplied in its place. To specify the column annotation from the ASCII file, insert
the following command at the beginning of the file:

#COLUMN ANNOTATION

This command specifies that the first row of data should be used as the column
annotation. To specify the row annotation from the ASCII file, insert the following
command at the beginning of the file.

#ROW ANNOTATION

This command specifies that the first value of each row is to be used as the row
annotation for that line. An example of a valid ASCII file follows (Note - the entry
for row 3, column 3 is missing):

#DELIMITER=’,’
#COLUMN ANNOTATION
#ROW ANNOTATION
Houston,Dallas,San Antonio,Austin
QTR 1,12.5,21.4,34.6,12.6
QTR 2,11.5,22.6,41.4,14.8
QTR 3,14.1,27.6,19.5
QTR 4,19.5,28.5,43.5,25.1

XintEditTableReleaseColumn
This function releases a specified frozen column.

Boolean XintEditTableReleaseColumn (...)

Returns False if the specified column index is out of range or if the column is not
frozen. Otherwise, it returns True.

Widget widget EditTable widget ID.

int column The index of the frozen column to be released.
176 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 177 Thursday, January 22, 2009 12:29 PM
XintEditTableReleaseRow
This function releases a specified frozen row.

Boolean XintEditTableReleaseRow (...)

Returns False if the specified row index is out of range or if the row is not frozen.
Otherwise, it returns True.

XintEditTableReorderColumns
This function changes the order of a list of columns. The columns to be reordered must
be a contiguous sequence of columns. The new order is specified as an array of original
column indices indicating the new ordering of the columns. For instance, if columns 5
through 10 are to be reordered, then the new order can be specified as an integer array
containing the new order 8, 5, 9, 7, 6, 10; where the original column 8 is now column 5.

Boolean XintEditTableReorderColumns (...)

Returns False if the specified columns could not be reordered.

XintEditTableReorderRows
This function changes the order of a list of rows. The rows to be reordered must be a
contiguous sequence of rows. The new order is specified as an array of original row
indices indicating the new ordering of the rows. For instance, if rows 5 through 10 are
to be reordered, then the new order can be specified as an integer array containing the
new order 8, 5, 9, 7, 6, 10; where the original row 8 is now row 5.

Boolean XintEditTableReorderRows (...)

Returns False if the specified rows could not be reordered.

Widget widget EditTable widget ID.

int row The index of the frozen row to be released.

Widget widget EditTable widget ID.

int col_start Column index of the first column to be reordered.

int col_end Column index of the last column to be reordered.

int * order Pointer to integer array containing column indices in different order.

Widget widget EditTable widget ID.

int row_start The row index of the first column to be reordered.

int row_end The column index of the last row to be reordered.

int * order Pointer to integer array containing row indices in a different order.
EditTable Programming Guide 177

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 178 Thursday, January 22, 2009 12:29 PM
XintEditTableRemoveAllLocalCallbacks
This function removes all local callback procedures associated with a specified
callback resource.

Boolean XintEditTableRemoveAllLocalCallbacks (...)

Returns False if callback_name is not a valid callback resource name.

XintEditTableRemoveLocalCallbacks
This function removes a local callback attached to a cell, row or column.

Boolean XintEditTableRemoveLocalCallbacks (...)

Returns False if specified column or row indices are out of range or if the name of
the callback is invalid.

XintEditTableRowScroll
This function allows the program to control scrolling of rows.

void XintEditTableRowScroll (...)

Widget widget EditTable widget ID.

char * callback_name Callback resource name defined by EditTable widget.

Widget widget EditTable widget ID.

int col Index of column where local callback is registered.

int row Index of the row where local callback is registered.

char * callback_name Name of the callback to remove.

XtCallbackProc callback_proc Callback procedure to remove.

XtPointer client_data Client data attached to callback_proc.

Widget widget EditTable widget ID.

int scroll_operation Specifies the direction and amount of scrolling.
178 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 179 Thursday, January 22, 2009 12:29 PM
The operation argument must be one of the following:

XintEditTableSetCellBackground
This function sets the background color of a specified block of cells.

Boolean XintEditTableSetCellBackground (...)

Returns False if the cell specification is out of range. Otherwise, returns True.

XintEditTableSetCellDisplayAttributes
Sets the cell display attributes of the specified range of cells.

Boolean XintEditTableSetCellDisplayAttributes (...)

Returns False if widget is not an EditTable widget.

Defined Constant Description

XintDECREMENT To scroll one row up.

XintINCREMENT To scroll one row down.

XintPAGE_DECREMENT To scroll one page up.

XintPAGE_INCREMENT To scroll one page down.

XintTO_FIRST To scroll back to the first row.

XintTO_LAST To scroll to the last row.

Widget widget EditTable widget ID.

int col_start The index of the starting column.

int num_cols Number of columns.

int row_start The index of the starting row.

int num_rows The number of rows.

Pixel pixel The pixel value used to draw the cell background.

Widget widget EditTable widget ID.

int col_start Index of the starting column.

int num_cols Number of columns.

int row_start Index of the starting row.

int num_rows Number of rows.

Pixel background Background color of the cells.

Pixel foreground Foreground color of the cells.

XtPointer data_addr Address of value for cell (if data type is
XintTYPE_POINTER, pass pointer value directly).
EditTable Programming Guide 179

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 180 Thursday, January 22, 2009 12:29 PM
XintEditTableSetCellFont
This function sets the index of the font used for displaying the specified set of cells.
This function will have no effect if resource XmNfontTable is set to NULL.

Boolean XintEditTableSetCellFont (...)

The function returns False if the cell specification is out of range. Otherwise, it
returns True.

XintEditTableSetCellForeground
This function sets the foreground color of a specified block of cells.

Boolean XintEditTableSetCellForeground (...)

The function returns False if the cell specification is out of range. Otherwise, it
returns True.

Widget widget EditTable widget ID.

int col_start The index of the starting column.

int num_cols Number of columns.

int row_start The index of the starting row.

int num_rows The number of rows.

int index The index of the font into the font table (starts at 0).
Specify -1 to use the default table font.

Widget widget EditTable widget ID.

int col_start The index of the starting column.

int num_cols Number of columns.

int row_start The index of the starting row.

int num_rows The number of rows.

Pixel pixel The pixel value used to draw the cell foreground.
180 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 181 Thursday, January 22, 2009 12:29 PM
XintEditTableSetCellHeight
This function sets the height, in the unit system specified by resource
XmNcellSizeUnit, of a specified block of cells. Note that all the cells in a row (column
if table is transposed) have the same height.

Boolean XintEditTableSetCellHeight (...)

The function returns False if the index specification is out of range. Otherwise, it
returns True.

XintEditTableSetCellPixmap
This function sets the background pixmap of a specified block of cells. A pixmap of
depth 1 or a depth equal to that of the EditTable widget window is supported. For a
bitmap (pixmap of depth 1), the cell foreground color is used for the set bit and the
background color is used for the unset bit.

Boolean XintEditTableSetCellPixmap (...)

The function return False if the cell specification is out of range. Otherwise, it returns
True.

Widget widget EditTable widget ID.

int index_start The index of the starting row (column if table is transposed).

int num_units Number of rows (columns if table is transposed) to change.

int height The height specification.

Widget widget EditTable widget ID.

int col_start The index of the starting column.

int num_cols Number of columns.

int row_start The index of the starting row.

int num_rows The number of rows.

Pixmap pixmap The pixmap ID. Specify XintUNDEFINED_PIXMAP to
have no pixmap drawn in the background.
EditTable Programming Guide 181

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 182 Thursday, January 22, 2009 12:29 PM
XintEditTableSetCellPixmapList
This function sets the background pixmap of a specified block of cells from a list of
pixmaps.

Boolean XintEditTableSetCellPixmapList (...)

The function return False if the cell specification is out of range. Otherwise, it returns
True.

XintEditTableSetCellPointerPosition
This function sets the cell pointer to the specified cell. The cell pointer indicates the
cell that is being edited.

Boolean XintEditTableSetCellPointerPosition (...)

The function returns False if the cell location is out of range. Otherwise, it returns
True.

Widget widget EditTable widget ID.

int col_start The index of the starting column.

int num_cols Number of columns.

int row_start The index of the starting row.

int num_rows The number of rows.

Pixmap * pixmap_list The list of pixmap IDs stored column wise. There must
exactly the same number of pixmaps in the list as cells spec-
ified. Specify XintUNDEFINED_PIXMAP to have no pix-
map drawn in the background of a cell.

Widget widget EditTable widget ID.

int col The column index of the cell in which to position the cell pointer.

int row The row index of the cell in which to position the cell pointer.
Specify -1 to have the cell pointer disappear.
182 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 183 Thursday, January 22, 2009 12:29 PM
XintEditTableSetCellWidth
This function sets the width, in the unit system specified by resource
XmNcellSizeUnit, of a specified block of cells. Note that all the cells in a column (row
if table is transposed) have the same width.

Boolean XintEditTableSetCellWidth (...)

The function return False if the index specification is out of range. Otherwise, it returns
True.

XintEditTableSetColumnAnnotationAlignment
This function sets the annotation alignment, starting at a user specified column and
uses that alignment for a user specified number of columns.

Boolean XintEditTableSetColumnAnnotationAlignment(...)

Returns False if widget is not a valid EditTable widget or if column is out of range.
Returns True otherwise.

XintEditTableSetColumnFont
This function specifies the font index to be used by a range of columns. This function
has no effect if resource XmNfontTable is NULL.

Boolean XintEditTableSetColumnFont (...)

The function returns NULL if the column specification is out of range.

Widget widget Widget ID of the EditTable.

int col Column number to set the annotation alignment.

int num_cols Number of columns to repeat the annotation alignment.

int annot_align Annotation alignment.

Widget widget EditTable widget ID.

int index_start The index of the starting column (row if table is transposed).

int num_units Number of columns (rows if table is transposed) to change.

int width The width specification.

Widget widget EditTable widget ID.

int col_start Starting column number.

int num_cols Number of columns.

int font_index Specifies an index into the font table (starts at 0). Specify -1
to use the default font.
EditTable Programming Guide 183

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 184 Thursday, January 22, 2009 12:29 PM
XintEditTableSetColumnUserData
This function specifies the column and the column’s user data.

Boolean XintEditTableSetColumnUserData (...)

The function returns False if widget is not a valid EditTable or if the column does
not exist. Returns True, otherwise.

XintEditTableSetListBehavior
This function simulates the XmList widget. The number of the selection will be
equal to the number of rows selected. (When this function is “off” the selection will
be equal to one no matter the number of rows selected, since they are treated as one
“group”.)

Boolean XintEditTableSetListBehavior (...)

The policy argument must include one of the following:

Widget widget EditTable widget ID.

int column Column number to store the user data.

XtPointer user_data Pointer to user data.

Widget widget EditTable widget ID.

int policy Specifies the selection policy.

Boolean editable Specifies the edit mode. Editable is False
by default. Setting this resource to True or
False in turn sets the ColumnEditMode of
the table.

Defined Constant Description

XintDEFAULT_TABLE_SELECT Restores the default table selection mode.

XmSINGLE_SELECT Select one row at a time.

XmMULTIPLE_SELECT Allows multiple rows selection.

XmEXTENDED_SELECT Allows extended selection.

XmBROWSE_SELECT Allows single selection with “drag and browse”
functionality.
184 EditTable Programming Guide

EDITTABLE WIDGET
EditTable Functions 4

c2-editt.fm5 Page 185 Thursday, January 22, 2009 12:29 PM
Specifying one of the above arguments will make the table read only. To restore the
table back to its default behavior, call the function again with policy set to
XintDEFAULT_TABLE_SELECT. The function returns False if the widget is not an
EditTable widget.

XintEditTableSetRowFont
This function specifies the font index to be used by a range of rows. This function has
no effect if resource XmNfontTable is NULL.

Boolean XintEditTableSetRowFont (...)

The function returns NULL if the row specification is out of range.

XintEditTableSetSelection
This function clears all previous selections and sets a new selection.The selection can
be specified as a set of cells, columns or rows. The function will trigger the added
selection callback function, if any, unless XintNO_CALLBACK is also included as
part of the selection_mode argument.

Boolean XintEditTableSetSelection (...)

The selection_mode argument must include one of the following:

Widget widget EditTable widget ID.

int row_start Starting row number.

int num_rows Number of rows.

int font_index Specifies an index into the font table (starts at 0). Specify
-1 to use the default font.

Widget widget EditTable widget ID.

int col_start Starting column number.

int num_cols Number of columns.

int row_start Starting row number.

int num_rows Number of rows.

int selection_mode Specifies if selection for set of cells, rows or columns.

Defined Constant Description

XintSELECT_CELL Selection is a block of cells.

XintSELECT_ROW Selection is a set of rows.

XintSELECT_COLUMN Selection is a set of columns.
EditTable Programming Guide 185

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 186 Thursday, January 22, 2009 12:29 PM
In addition, if the callback is NOT to be called, include the XintNO_CALLBACK
constant by using bit-wise OR, as illustrated below.

XintEditTableSetSelection(table, 1, 2, 1, 10,
 XintSELECT_CELL | XintNO_CALLBACK()

XintEditTableSortByColumn
This function sorts the rows in the specified column using the user defined
comparator function.

int * XintEditTableSortByColumn (...)

Returns NULL if the widget is not an EditTable widget. Otherwise, it returns the
sorted row index array of the specified column.

XintEditTableUndeleteColumns
This function restores to the table columns that have been deleted with the function
XintEditTableDeleteColumns.

Boolean XintEditTableUndeleteColumns (Widget widget)

where widget is the widget ID of a EditTable widget. Returns True if the deleted
columns were restored successfully to the table. Otherwise, it returns False.

XintEditTableUndeleteRows
This function restores rows to the table that have been deleted with the function
XintEditTableDeleteRows.

Boolean XintEditTableUndeleteRows (Widget widget)

where widget is the widget ID of a EditTable widget. Returns True if the deleted
rows were restored successfully to the table. Otherwise, it returns False.

XintEditTableUnfreeze
This function unfreezes a table that has been frozen in order to update one, or a small
number, of cells without re-drawing the table after every change. Since
XintEditTableUnfreeze does not redisplay the table, the
XintEditTableUpdateDataDisplay function must be called to redisplay the cell, or
cells, which have been changed.

Widget widget EditTable widget ID.

int column The column to be sorted.

int (*)() comparator The comparator function pointer.
186 EditTable Programming Guide

EDITTABLE WIDGET
Validate Value Callback 4

c2-editt.fm5 Page 187 Thursday, January 22, 2009 12:29 PM
The table should be frozen (using function XintEditTableFreezeUpdate) when
several cell attributes are to be changed, such as changing both the foreground and
background colors. Freezing the table prevents the cell from being re-drawn after
each individual change. Of course, if only a single attribute is changed, freezing is
unnecessary.

Using this function together with XintEditTableUpdateDataDisplay is more
efficient than calling the XintEditTableFreezeUpdate function with the state
argument set to False, because the application can control more precisely which part
of the table to re-draw. However, this function should only be used when the
changes made do not affect the geometry.

Boolean XintEditTableUnfreeze (...)

Returns False if the table argument is not an EditTable widget. Otherwise, it returns
True.

XintEditTableUpdateDataDisplay
This function causes the EditTable widget to redisplay the values of the specified
cell, row or column. To specify a whole row or a whole column, use integer constant
XintUPDATE_ALL for the other index value. To specify the whole table, set both
row and column indexes to XintUPDATE_ALL. You need to call this function only
if 1) you have directly changed the value of one or more array elements in the
specified cell, row or column and the application is sharing column data with the
EditTable widget, or 2) after you have made a series of calls to function
XintEditTableFillCellNoUpdate.

Boolean XintEditTableUpdateDataDisplay (...)

Returns False if the specified column or row indices are out of range. Otherwise, it
returns True.

Widget table EditTable widget ID.

Widget widget EditTable widget ID.

int column Index of the cell or column to be updated.

int row Index of the cell or row to be updated.
EditTable Programming Guide 187

EDITTABLE WIDGET
EditTable Functions4

c2-editt.fm5 Page 188 Thursday, January 22, 2009 12:29 PM
188 EditTable Programming Guide

c2-scrol.fm5 Page 189 Thursday, January 22, 2009 12:33 PM
Scroll Widget Class 5
Overview

The Scroll widget is a container widget that scrolls INT widgets so that the scrolled
child widget’s annotation remains visible during scrolling. The Scroll widget
combines one or two ScrollBar widgets, a viewing area that implements a visible
window onto a portion of the scrolled child, and drawing area widgets for displaying
the scrolled child widget’s title, horizontal annotation and vertical annotation. The
application controls which of the Scroll widget’s components are displayed and
where they are displayed. An application that displays more than one Scroll widget
can have the multiple Scroll widgets share one or two ScrollBar widgets so that they
are scrolled simultaneously.

This chapter includes the following sections:

• Scroll Children on page 190

• Creating a Scroll Widget on page 190

• Inherited Behavior and Resources on page 194

• Scroll Components on page 199

• Scroll Functions on page 200
EditTable Programming Guide 189

SCROLL WIDGET CLASS
Scroll Children5

c2-scrol.fm5 Page 190 Thursday, January 22, 2009 12:33 PM
Scroll Children
A Scroll widget can manage the scrolling of only one child. In particular, the Scroll
widget accepts as a scrolled child an EditTable widget. The Scroll widget creates
several child widgets for displaying the annotation and for the scrolling operation.
There is a convenience function provided for accessing these widgets so that the
application can customize the layout, appearance or behavior of the children.

Creating a Scroll Widget
An application creates a Scroll widget as a child of any container widget using either
an Xt widget creation function or the supplied convenience function
XintCreateScroll.

Specifying Annotation and Annotation Placement
You specify the placement and how the title, horizontal and vertical annotation will
be displayed with resources defined by the scrolled child. However, you specify the
margins between the title, the annotation, the scrolled child and the Scroll widget
using resources defined by the Scroll widget. Note that you must explicitly set the
height of the horizontal annotation window(s) and the width of the vertical
annotation window(s) using Scroll resources.

Specifying Scrollbar Display Policy and Placement
Using resources, you specify whether the scroll bars will always be displayed or if
they will be displayed only when needed. You also specify where the scroll bars will
be placed using Scroll resources. You can further customize the appearance and
behavior of the scroll bars by accessing them directly using their widget IDs which
are obtained via a convenience function. If the application has created a ScrollBar
widget used by a Scroll widget, then the application is responsible for its placement.

Specifying a 3-D look for the Viewing Areas
The viewing areas for the scrolled widget, its title, its horizontal annotation and its
vertical annotation are enclosed within Frame widgets that have a 3-D appearance.

Synchronized Scrolling
Multiple Scroll widgets can share scrollbar(s), so that it is possible to synchronize
the scrolling of the scrolled child widgets in the horizontal and/or vertical direction.
If two scrolled child widgets that are connected to the same scrollbar have a different
190 EditTable Programming Guide

SCROLL WIDGET CLASS
Connecting Scrollbars to Scroll Widgets 5

c2-scrol.fm5 Page 191 Thursday, January 22, 2009 12:33 PM
height and/or width, the scrolling rate will be proportional to the height and/or width
of each child.

Connecting Scrollbars to Scroll Widgets
You accomplish synchronized scrolling by using the Scroll resources,
XmNhorizontalScrollBar and XmNverticalScrollBar, to specify (at widget
creation time) that a Scroll widget is to use a specific scrollbar to control the
scrolling of its scrolled child. T he shared scrollbar(s) can be XmScrollBar widget(s)
created by the application or XmScrollBar widget(s) created automatically when a
Scroll widget was created. To obtain the widget ID for a scrollbar created by a Scroll
widget use the XintScrollGetChild function. To obtain the widget ID of the Scroll
widget controlling a specific ScrollBar widget, get the value of the ScrollBar
widget’s XmNuserData resource.
EditTable Programming Guide 191

SCROLL WIDGET CLASS
Creating a Scroll Widget5

c2-scrol.fm5 Page 192 Thursday, January 22, 2009 12:33 PM
Appearance
Figure 20 shows a vertical scrollbar which is shared by the two scrolled child
widgets and thus scrolls both of them simultaneously.

Figure 20. Example of a Shared Scrollbar
192 EditTable Programming Guide

SCROLL WIDGET CLASS
Scroll Layout 5

c2-scrol.fm5 Page 193 Thursday, January 22, 2009 12:33 PM
Scroll Layout
Figure 21 shows the layout of a Scroll widget with the title at the top and the
ScrollBars at the right and at the bottom:

Figure 21. Scroll Layout

Figure key The following table describes the key for Figure 21:

1

2
3

4

5

6
7

8

9 10
11

12

13

14

15
16

17

1 Horizontal outside margin 10 Vertical inside margin

2 Title label location 11 Right vertical annotation window

3 Title margin 12 Vertical outside margin

4 Top horizontal annotation window 13 Horizontal inside margin

5 Horizontal inside margin 14 Bottom horizontal annotation window

6 Vertical outside margin 15 Horizontal Outside Margin

7 Left vertical annotation window 16 Horizontal Scrollbar

8 Vertical inside margin 17 Vertical ScrollBar

9 Scrolled child viewing window
EditTable Programming Guide 193

SCROLL WIDGET CLASS
Inherited Behavior and Resources5

c2-scrol.fm5 Page 194 Thursday, January 22, 2009 12:33 PM
Inherited Behavior and Resources
The Scroll widget inherits behavior and resources from Core, Composite,
Constraint, and Manager classes.

• Class pointer is xintScrollWidgetClass

• Class name is XintScroll

• Header file is included as <Xint/Scroll.h>

Resources The following resources are defined by the XintScroll widget class.

Name Default
Type Access

XmNaddChildrenToTabGroup True
Boolean

CG

XmNbottomAnnotationHeight 30
int

CSG

XmNhorizontalAutoSized False
Boolean

CSG

XmNhorizontalInsideMargin 10
int

CSG

XmNhorizontalOutsideMargin 10
int

CSG

XmNhorizontalScrollBar NULL
Widget

CSG

XmNleftAnnotationWidth 30
int

CSG

XmNrightAnnotationWidth 30
int

CSG

XmNscrollBarDisplayPolicy XintAS_NEEDED
int

CSG

XmNscrollBarExtend True
Boolean

CSG

XmNscrollBarPlacement XintBOTTOM_RIGHT
int

CG

XmNshadowThickness 3
Dimension

CSG

XmNshadowType XintSHADOW_IN
int

CSG
194 EditTable Programming Guide

SCROLL WIDGET CLASS
Inherited Behavior and Resources 5

c2-scrol.fm5 Page 195 Thursday, January 22, 2009 12:33 PM
XmNaddChildrenToTabGroup

Specifies whether the Scroll widget includes it children into tab groups using function
XmAddTabGroup.

XmNbottomAnnotatationHeight

Specifies the height (in pixels) of the window containing the horizontal annotation displayed
below the scrolled child widget. If the child of the Scroll widget has resource
XmNautoMarginAdjust set to XintADJUST_BOTTOM, this resource will be ignored
and the viewing area height will be calculated automatically.

XmNhorizontalAutoSized

When this resource is set to True, the Scroll widget will try to adjust automatically its
width, so that its viewport width exactly matches the scrolled child width.

XmNhorizontalInsideMargin

Specifies the margin width (in pixels) between the scrolled child widget’s viewing area
and the horizontal annotation viewing areas.

XmNhorizontalOutsideMargin

Specifies the margin width (in pixels) between the Scroll widget’s window border and
the horizontal annotation viewing areas.

XmNtitleMargin 20
int

CSG

XmNtopAnnotationHeight 30
int

CSG

XmNverticalAutoSized False
Boolean

CSG

XmNverticalInsideMargin 10
int

CSG

XmNverticalOutsideMargin 10
int

CSG

XmNverticalScrollBar NULL
Widget

CSG

Name (continued)
Default

Type Access
EditTable Programming Guide 195

SCROLL WIDGET CLASS
Inherited Behavior and Resources5

c2-scrol.fm5 Page 196 Thursday, January 22, 2009 12:33 PM
XmNhorizontalScrollBar

Specifies the widget ID of a horizontal ScrollBar to be used by the Scroll widget. If
this resource is set to NULL at widget creation time, then the Scroll widget will
create a new horizontal ScrollBar widget to control the horizontal scrolling of its
scrolled child. This resource provides a mechanism to share a horizontal scrollbar
among several Scroll widgets. Note: The value of this resource can be set after
widget creation time only if the application had specified an application created
scrollbar at widget creation time.

XmNleftAnnotationWidth

Specifies the width (in pixels) of the viewing area containing the vertical annotation
to the left of the scrolled widget. If the child of the Scroll widget has resource
XmNautoMarginAdjust set to XintADJUST_LEFT, this resource will be ignored
and the viewing area width will be calculated automatically.

XmNrightAnnotationWidth

Specifies the width (in pixels) of the viewing area containing the vertical annotation
to the right of the scrolled widget. If the child of the Scroll widget has resource
XmNautoMarginAdjust set to XintADJUST_RIGHT, this resource will be ignored
and the viewing area width will be calculated automatically.

XmNscrollBarDisplayPolicy

Controls when the horizontal and vertical ScrollBars will be visible. Specify the
defined integer constant XintAS_NEEDED if you want the scroll bars to be
displayed when the scrolled widget exceeds the visible viewing area in the horizontal
or vertical directions. Specify XintSTATIC if scroll bars are always to be displayed.

XmNscrollBarExtend

Specifies the extent of the scroll bars. When set to True, scroll bars occupy the full
length of the Scroll widget window. When set to False, scroll bars are aligned with
the Scroll widget viewport.
196 EditTable Programming Guide

SCROLL WIDGET CLASS
Inherited Behavior and Resources 5

c2-scrol.fm5 Page 197 Thursday, January 22, 2009 12:33 PM
XmNscrollBarPlacement

Specifies the position of the horizontal and vertical ScrollBars. You must use one of
the following defined constants when specifying the value of this resource:

XmNshadowThickness

Specifies the shadow thickness (in pixels) for the Frames around the viewing areas for
the scrolled child widget, its horizontal annotation and its vertical annotation. Usually
you will specify a positive integer as the value of this resource. Alternatively,
specifying 0 causes the widget to ignore the value of XmNshadowType. In this case,
no shadow is drawn around the annotation areas and a line of width 1 pixel is drawn
around the scrolled child.

Resource Value Description

XintBOTTOM_RIGHT
(default)

Specifies that the horizontal ScrollBar will be placed below
the scrolled widget and the vertical ScrollBar will be placed
to the right of the scrolled widget.

XintBOTTOM_LEFT Specifies that the horizontal ScrollBar will be placed below
the scrolled widget and the vertical ScrollBar will be placed
to the left of the scrolled widget.

XintTOP_LEFT Specifies that the horizontal ScrollBar will be placed above
the scrolled widget and the vertical ScrollBar will be placed
to the left of the scrolled widget.

XintTOP_RIGHT Specifies that the horizontal ScrollBar will be placed above
the scrolled widget and the vertical ScrollBar will be placed
to the right of the scrolled widget.
EditTable Programming Guide 197

SCROLL WIDGET CLASS
Inherited Behavior and Resources5

c2-scrol.fm5 Page 198 Thursday, January 22, 2009 12:33 PM
XmNshadowType

Specifies the display characteristics of the Frames around the viewing areas for the
scrolled child, its horizontal annotation and its vertical annotation. You must use one
of the following defined constants when specifying the value of this resource:

XmNtitleMargin

Specifies the margin height (in pixels) between the title and the horizontal annotation
window. If there is no horizontal annotation window, then the title margin is the
distance between the title and the scrolled child widget’s window.

XmNtopAnnotationHeight

Specifies the height (in pixels) of the window containing the horizontal annotation
displayed above the scrolled child widget. If the child of the Scroll widget has
resource XmNautoMarginAdjust set to XintADJUST_TOP, this resource will be
ignored and the viewing area height will be calculated automatically.

XmNverticalAutoSized

When set to True, the Scroll widget will try to automatically adjust its height, so that
its viewport height exactly matches the Scroll child height.

XmNverticalInsideMargin

Specifies the margin width (in pixels) between the scrolled child widget’s window
border and the vertical annotation viewing areas.

XmNverticalOutsideMargin

Specifies margin width (in pixels) between vertical annotation’s viewing area and

Resource Value Description

XintSHADOW_NONE Specifies that no shadow is to be drawn around the
annotation areas and a line of width XmNshad-
owThickness (pixels) will be drawn around the
scrolled child.

XintSHADOW_IN (default) Specifies that the Frames are to be drawn so that they
appear to be inset

XintSHADOW_OUT Specifies that the Frames are to be drawn so that they
appear to be outset.

XintSHADOW_ETCHED_IN Specifies that the Frames are to be drawn with a dou-
ble line etched into the window.

XintSHADOW_ETCHED_OUT Specifies that the Frames are to be drawn with a dou-
ble line coming out of the window.
198 EditTable Programming Guide

SCROLL WIDGET CLASS
Scroll Components 5

c2-scrol.fm5 Page 199 Thursday, January 22, 2009 12:33 PM
Scroll widget’s window border (or possibly, the vertical ScrollBar).

XmNverticalScrollBar

Specifies the widget ID of a vertical ScrollBar to be used by the Scroll widget. If this
resource is set to NULL at widget creation time, the Scroll widget will create a new
vertical ScrollBar widget to control the vertical scrolling of its scrolled child. This
resource provides a mechanism to share a vertical scrollbar among several Scroll
widgets. Note: The value of this resource can be set after widget creation time, only if
the application had specified an application created scrollbar at widget creation time.

Scroll Components
The following table lists the named widgets contained within a Scroll widget which
are accessible to the application programmer. The appearance and behavior of the
internal widgets can be specified in a resource file using the listed widget names.

Name Class Description

bottom_w XmDrawingArea The window where the bottom horizontal annotation is
drawn.

hsb XmScrollBar The horizontal ScrollBar.

left_w XmDrawingArea The window where the left vertical annotation is
drawn.

right_w XmDrawingArea The window where the right vertical annotation is
drawn.

top_w XmDrawingArea The window where the top horizontal annotation is
drawn.

viewport XmDrawingArea The window where the current view of the scrolled
child is drawn.

vsb XmScrollBar The vertical ScrollBar.
EditTable Programming Guide 199

SCROLL WIDGET CLASS
Scroll Functions5

c2-scrol.fm5 Page 200 Thursday, January 22, 2009 12:33 PM
The following components are created only when the child of the Scroll widget is an
EditTable widget with frozen rows or columns.

Scroll Functions
The following functions are defined for creating a Scroll widget, obtaining the
widget IDs of the internal named children of a Scroll widget and scrolling to the
specified position.

XintCreateScroll

XintCreateScroll creates an unmanaged Scroll widget.
Widget XintCreateScroll (...)

Name Class Description

bottom_frozen_w XmDrawingArea The window where the bottom horizontal
annotation for frozen rows/columns is
drawn.

left_frozen_w XmDrawingArea The window where the left vertical annota-
tion for frozen rows/columns is drawn.

right_frozen_w XmDrawingArea The window where the right vertical annota-
tion for frozen rows/columns is drawn.

top_frozen_w XmDrawingArea The window where the top horizontal anno-
tation for frozen rows/columns is drawn.

Function Name Description

XintCreateScroll Creates a dialog shell containing an unmanaged Scroll
widget.

XintScrollGetChild Returns the widget ID of a named child widget of the
specified Scroll widget.

XintScrollScrollToPosition Scrolls to the specified position.

Widget parent Parent of new Scroll widget.

char * name Name of new Scroll widget.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.
200 EditTable Programming Guide

SCROLL WIDGET CLASS
Scroll Functions 5

c2-scrol.fm5 Page 201 Thursday, January 22, 2009 12:33 PM
XintScrollGetChild

This function returns the widget ID of a specified Scroll widget component.
Widget XintScrollGetChild (...)

You must specify child as one of the following defined integer constants.

If the child of the Scroll widget is an EditTable widget, you can also specify child as
one of the following defined integer constants.

Widget widget Scroll widget ID.

int child Specifies named child of interest as a defined integer constant.

Defined Constant Description

XintBOTTOM_WINDOW Bottom horizontal annotation DrawingArea widget.

XintLEFT_WINDOW Left vertical annotation DrawingArea widget.

XintHORIZONTAL_SCROLLBAR Horizontal ScrollBar widget.

XintRIGHT_WINDOW Right vertical annotation DrawingArea widget.

XintTOP_WINDOW Top horizontal annotation DrawingArea widget.

XintVERTICAL_SCROLLBAR Vertical ScrollBar widget.

XintVIEWPORT DrawingArea widget containing current view of scrolled
child.

Defined Constant Description

XintLEFT_FROZEN_WINDOW DrawingArea widget that can contain left row
annotation for frozen rows

XintRIGHT_FROZEN_WINDOW DrawingArea widget that can contain right row
annotation for frozen rows

XintTOP_FROZEN_WINDOW DrawingArea widget that can contain top col-
umn annotation for frozen columns

XintBOTTOM_FROZEN_WINDOW DrawingArea widget that can contain bottom
column annotation for frozen columns

XintFROZEN_COLUMN_VIEWPORT DrawingArea widget containing frozen col-
umns.

XintFROZEN_ROW_VIEWPORT DrawingArea widget containing frozen rows.

XintFROZEN_INTERSECTION_VIEWPORT DrawingArea widget containing intersection
of frozen rows and columns.
EditTable Programming Guide 201

SCROLL WIDGET CLASS
Scroll Functions5

c2-scrol.fm5 Page 202 Thursday, January 22, 2009 12:33 PM
XintScrollScrollToPosition

Function forces the Scroll widget to scroll to the specified position, in one or both
directions. The function returns False if the arguments user_x or user_y are out of
range.
Boolean XintScrollScrollToPosition (...)

Widget widget The Scroll widget ID.

float user_x The horizontal coordinate where to scroll (column
number if child is an EditTable).

float user_y The vertical coordinate where to scroll (row number if
child is an EditTable).

float vp_x_percent Where to scroll as a percentage (0.0 at the left, 50.0 in
the middle, etc.) Specify a negative value to disable scroll-
ing in that direction.

float vp_y_percent Where to scroll as a percentage (0.0 at the top, 50.0 in
the middle, etc.) Specify a negative value to disable scroll-
ing in that direction.
202 EditTable Programming Guide

c3.fm5 Page 203 Thursday, January 22, 2009 12:34 PM
Examples 6
Overview

This chapter contains examples for the EditTable and Scroll widgets in the INT
EditTable Widget Library. We recommend that you to read sections of this chapter
after you reading the corresponding reference material in Chapter 2—CompBase
Widget Metaclass through Chapter 5—Scroll Widget Class. The classes defined in
the library are described in alphabetical order with descriptions of object classes
following the descriptions of widget classes.

Note: There are additional examples distributed with the INT EditTable Widget
Library that are not documented in this chapter. Please refer to the comments inside
the source code files for those examples.

This chapter includes the following sections:

• How To Make and Run Example Programs on page 204

• Example 1: Creating a Simple Table on page 205

• Example 2: Scrollable Table with User Data on page 208

• Example 3: Change Fonts and Add Totals on page 211

• Example 4: Widget In A Cell on page 216
EditTable Programming Guide 203

EXAMPLES
How To Make and Run Example Programs6

c3.fm5 Page 204 Thursday, January 22, 2009 12:34 PM
How To Make and Run Example Programs
Example programs in source code form are distributed to you along with the INT
EditTable Widget Library. The following examples demonstrate how simple it is to
create tables with EditTable. These examples show how to implement a variety of
features in a common range of applications, but these are not intended to provide an
exhaustive survey of EditTable options.

Makefile
The directory containing the example programs also has a makefile that works for
SPARC platforms. You may need to edit the makefile if you have a different
platform. You may also need to edit the locations of the include files and the libraries
in the makefile. A portion of the makefile that makes the EditTable examples is as
follows:

INTDIR = ..
XLIBS = -lXm -lXt -lX11

CFLAGS = -I$(INTDIR) -D_NO_PROTO
LIBS = $(INTDIR)/lib/libINT.a $(XLIBS) -lm

all: edittable_1

edittable_1: edittable_1.o $(INTDIR)/lib/libINT.a
 cc -O -o edittable_1 edittable_1.o $(LIBS)

Running an Example Program
To run an example program after the example’s source has been made into an
executable program, just type the name of the example at the operating system
prompt.

Note: Some of the example programs use data files that must be in your current
directory when you execute the example program. If an example program requires a
data file to run, then the name of the file is the same as the example program’s name
with a file extension of .dat.
204 EditTable Programming Guide

EXAMPLES
Example 1: Creating a Simple Table 6

c3.fm5 Page 205 Thursday, January 22, 2009 12:34 PM
Example 1: Creating a Simple Table
The following example shows how to build a simple table with integer data,
user-defined column headings, and automatic row annotation. as illustrated in the
figure below. In particular, this example demonstrates:

• How to create the EditTable widget.

• How to set the size of the table.

• How to set the column annotation.

• How to let EditTable automatically generate row annotation.

• How margins can be calculated automatically.

• How to fill the table with data using the FillCell function.

• How to manage the table and exit to the event loop.

The following pages contain a complete example of the C code required to generate
this table.

Figure 22. Example of a Simple Table with Integer Data
EditTable Programming Guide 205

EXAMPLES
Example 1: Creating a Simple Table6

c3.fm5 Page 206 Thursday, January 22, 2009 12:34 PM
Code The following code listing shows how to create the table shown in Figure 22.
/***
 * EXAMPLE 1: A SIMPLE TABLE USING THE EDITTABLE WIDGET *
 ***/

#include <stdio.h>
#include <Xm/Xm.h>
#include <Xint/EditTable.h>

main(argc, argv)
int argc;
char *argv[];
{
 XtAppContext app_context;
 Widget top_level;
 Widget edit_table;
 Arg arg[20];
 int col, row, count, n;
 static char *column_annotation[] = {“col1”, “col2”, “col3”,

 “col4”, “col5”, “col6”};

 /* INITIALIZE THE TOOLKIT */

 n = 0;
 top_level = XtAppInitialize (&app_context, “Example”, NULL,

 0, &argc, argv, NULL, arg, n);

/* CREATE THE EDITTABLE WIDGET UNDER THE TOP LEVEL SHELL */

 n = 0;
 XtSetArg(arg[n], XmNtitleString,
 “EditTable With\nInteger Data Format”); n++;

 /* SIZE THE TABLE */

 XtSetArg(arg[n], XmNnumberOfColumns, 6); n++;
 XtSetArg(arg[n], XmNnumberOfRows, 10); n++;

 /* SET THE COLUMN ANNOTATION */

 XtSetArg(arg[n], XmNautomaticColumnAnnotation, False); n++;
 XtSetArg(arg[n], XmNcolumnAnnotationData,
 column_annotation); n++;
206 EditTable Programming Guide

EXAMPLES
Example 1: Creating a Simple Table 6

c3.fm5 Page 207 Thursday, January 22, 2009 12:34 PM
 /* LET EDITTABLE GENERATE THE ROW ANNOTATION */

 XtSetArg(arg[n], XmNautomaticRowAnnotation, True); n++;
 XtSetArg(arg[n], XmNgridLineStyle, XintGRID_LINE_SHADOW_IN);
n++;

 /* MARGINS WILL BE CALCULATED AUTOMATICALLY */

 XtSetArg(arg[n], XmNautoMarginAdjust, XintADJUST_ALL); n++;
 edit_table = XintCreateEditTable(top_level, “edit_table”, arg, n);

 /* FILL THE TABLE WITH DATA USING THE FILLCELL FUNCTION */

 count = 0;
 for (col=1; col<=6; col++) {
 for (row=1; row<=10; row++) {
 XintEditTableFillCell(edit_table, col, row, (caddr_t) &count);
 count++;
 }
 }

 /* MANAGE THE TABLE AND GO TO THE EVENT LOOP */

 XtManageChild(edit_table);
 XtRealizeWidget(top_level);
 XtAppMainLoop(app_context);
}

EditTable Programming Guide 207

EXAMPLES
Example 2: Scrollable Table with User Data6

c3.fm5 Page 208 Thursday, January 22, 2009 12:34 PM
Example 2: Scrollable Table with User Data
In the following example, we have created a table that accepts user input. and which
also uses a scroll bar. In particular, this example demonstrates:

• How to initialize the toolkit and create a Scroll widget.

• How to create the EditTable widget under the Scroll widget.

• How to define the column annotation and display it on top.

• How to hide row annotation.

• How to have margins calculated automatically.

• How to define the column format and size.

• How to define a Totals column placed at the bottom.

• How to add a scroll bar.

The following page contains a complete example of the C code required to generate
this table.

Figure 23. Example of Scrollable Table with User Data
208 EditTable Programming Guide

EXAMPLES
Example 2: Scrollable Table with User Data 6

c3.fm5 Page 209 Thursday, January 22, 2009 12:34 PM
Code The following code listing shows how to create the table shown in Figure 23.
/***
 * EXAMPLE 2: A SCROLLABLE TABLE WITH USER DATA *
**/
#include <stdio.h>
#include <Xm/Xm.h>
#include <Xint/EditTable.h>
#include <Xint/Scroll.h>

main(argc, argv)
int argc;
char *argv[];
{
 XtAppContext app_context;
 Widget top_level;
 Widget scroll;
 Widget edit_table;
 Arg arg[20];
 int n;
 static char *column_annotation[] = { “Employee\nName”,

“Employee\nID Number”,
“Salary &\nBenefits”,

 “Travel\nExpense”,
“Office\nExpense”};

 static int column_width[] = {16, 6, 10, 10, 10};
 static char *column_format[] = {“%s”, “%d”, “%.2f”, “%.2f”, “%.2f”};
 static int column_data_type[] = {XintTYPE_STRING,

 XintTYPE_INTEGER, XintTYPE_FLOAT,
 XintTYPE_FLOAT, XintTYPE_FLOAT};

 /*
 * INITIALIZE THE TOOLKIT
 */
 n = 0;
 XtSetArg(arg[n], XmNallowShellResize, True); n++;
 top_level = XtAppInitialize (&app_context, “Expense Example”, NULL,
 0, &argc, argv, NULL, arg, n);
 /*
 * CREATE THE SCROLL WIDGET UNDER THE TOP LEVEL SHELL
 */
 scroll = XtVaCreateWidget(“scroll”, xintScrollWidgetClass,
 top_level,
 XmNhorizontalAutoSized, True,
 XmNheight, 450,
 XmNscrollBarExtend, False,
 XmNhorizontalInsideMargin, 3,
 NULL);
EditTable Programming Guide 209

EXAMPLES
Example 2: Scrollable Table with User Data6

c3.fm5 Page 210 Thursday, January 22, 2009 12:34 PM
 /*
 * CREATE THE EDITTABLE WIDGET UNDER THE SCROLL
 */
 edit_table = XtVaCreateManagedWidget(“table”,
 xintEditTableWidgetClass,scroll,
 XmNtitleString, “Departmental Expenses”,
 XmNnumberOfColumns, 5,
 XmNnumberOfRows, 100,
 XmNgridLineStyle, XintGRID_LINE_SHADOW_IN,

 /* DEFINE OUR OWN COLUMN ANNOTATION, DISPLAY IT ON TOP */
 XmNautomaticColumnAnnotation, False,
 XmNcolumnAnnotationData, column_annotation,
 XmNhorizontalAnnotationPlacement, XintPLACEMENT_TOP,

 /* NO ROW ANNOTATION DISPLAYED */
 XmNautomaticRowAnnotation, False,
 XmNverticalAnnotationPlacement, XintPLACEMENT_NONE,

 /* MARGINS WILL BE CALCULATED AUTOMATICALLY */
 XmNautoMarginAdjust, XintADJUST_ALL,
 XmNshowAnnotationGridLines, True,

 /* DEFINE THE COLUMNS FORMAT AND SIZE */
 XmNcolumnDataTypeData, column_data_type,
 XmNcolumnDataFormatData, column_format,
 XmNcolumnNumCharData, column_width,

 /* FIXED TOTAL COLUMN PLACED AT THE BOTTOM */
 XmNfrozenRowPlacement, XintPLACEMENT_BOTTOM,
 NULL);

 /*
 * FREEZE THE LAST ROW
 */
 XintEditTableFreezeRow(edit_table, 100);

 /*
 * SET STRING TOTAL
 */
 XintEditTableFillCell(edit_table, 1, 100, (caddr_t) “Total”);

 /*
 /*
 * MANAGE THE SCROLL AND GO TO THE EVENT LOOP
 */
 XtManageChild(scroll);

 XtRealizeWidget(top_level);
 XtAppMainLoop(app_context);
}

210 EditTable Programming Guide

EXAMPLES
Example 3: Change Fonts and Add Totals 6

c3.fm5 Page 211 Thursday, January 22, 2009 12:34 PM
Example 3: Change Fonts and Add Totals
At first glance, the following table is nearly identical to the previous one. However, we
have added new fonts to some of the cells, and we have built in the callbacks for
mathematical calculations so that the Totals row automatically calculates and validates
the figures in each column. In particular, this example demonstrates the following:

• How to define and install a font table.

• How to adjust column alignments

• How to calculate and validate totals.

• How to update cells with calculated values.

• How to apply various fonts to selected table cells.

The coding examples on the following page show only the portions of code that were
added to the previous example.

Figure 24. Example of Changing Fonts and Add Totals
EditTable Programming Guide 211

EXAMPLES
Example 3: Change Fonts and Add Totals6

c3.fm5 Page 212 Thursday, January 22, 2009 12:34 PM
Global Definitions
/*
 * FONT TABLE DEFINITION
 */
static void NumEmployee();
static void SumUp();

static char *font_table[] = {
 “*Times-bold-*18*”,
 “*helvetica-bold-*14*”,
 “*helvetica-bold-r*18*”,
 NULL /* termination */
};

/*
 * ADJUST COLUMN ALIGNMENTS
 */
 static int column_alignment[] = {
XintALIGNMENT_BEGINNING_MIDDLE,
 XintALIGNMENT_END_MIDDLE,
 XintALIGNMENT_END_MIDDLE,
 XintALIGNMENT_END_MIDDLE,
 XintALIGNMENT_END_MIDDLE};

Additional Resources
The following additional resources are set when creating the EditTable widget.

/*
 * INSTALL FONT TABLE
 */
 XmNfontTable, font_table,

/*
 *FIXED TOTAL COLUMN PLACED AT THE BOTTOM
 */
 XmNfrozenRowPlacement, XintPLACEMENT_BOTTOM,
 NULL);
212 EditTable Programming Guide

EXAMPLES
Additional Callbacks 6

c3.fm5 Page 213 Thursday, January 22, 2009 12:34 PM
Additional Callbacks
The following callbacks are registered after the EditTable widget is created.
 /*
 * ADD VALIDATION FOR NUMBER OF EMPLOYEES
 */
 XintEditTableAddLocalCallback(edit_table, 2, 0,
 XmNvalidateValueCallback,
 NumEmployee, NULL, XintLOCAL_CALLBACK_AFTER);

 /*
 * ADD VALIDATION CALLBACKS TO LAST THREE
 * COLUMNS SO THEY DO SOMETHING ON USER INPUT
 */
 for (n = 3; n <= 5; n++) {
 XintEditTableAddLocalCallback(edit_table, n, 0,
 XmNvalidateValueCallback,
 SumUp, NULL, XintLOCAL_CALLBACK_AFTER);
 }

Set Table Font
The following code assigns the various fonts used in the example.
 /*
 * USE HELVATICA-BOLD-14POINT FONT (SEE ’FONT_TABLE’ ABOVE)
 * FOR THE TOTAL ROW
 */
 XintEditTableSetRowFont(edit_table, 100, 1, 1);
 /*
 * USE TIMES-BOLD-18POINT FOR THE ’EMPLOYEE NAMES’
 */
 XintEditTableSetColumnFont(edit_table, 1, 1, 0);

 /*
 * USE HELVATICA-BOLD-18POINT FONT FOR THE FIELD ’TOTAL’
 */
 XintEditTableSetCellFont(edit_table, 1, 1, 100, 1, 2);
EditTable Programming Guide 213

EXAMPLES
Example 3: Change Fonts and Add Totals6

c3.fm5 Page 214 Thursday, January 22, 2009 12:34 PM
Number of Employees Callback
The following callbacks counts the number of employees.
/*
 * PERFORM CALCULATIONS
 */
static void
NumEmployee(widget, unused, cb)
Widget widget;
caddr_t unused;
XintEditTableValidateValueCallbackStruct *cb;
{
 int total = 0;
 int *data;
 int i, nrows;

 data = (int *) XintEditTableGetColumnData(widget,
cb->column, &nrows);

 /* IF THE NEW VALUE OF THE CURRENT CELL IS NULL */

 if (cb->new_value_string && cb->new_value_string[0] != ’\0’)
{
 if (sscanf(cb->new_value_string, “%d”, &i) == 1) {
 total = 1;
 } else {
 cb->cell_value.integer_value = XintUNDEFINED_INTEGER;
 total = 0;
 }
 } else {
 cb->cell_value.integer_value = XintUNDEFINED_INTEGER;
 total = 0;
 }

 for (i = 0; i < nrows - 1; i++) {
 if (i + 1 != cb->row && data[i] != XintUNDEFINED_INTEGER) total++;
 }
 if (total == 0) total = XintUNDEFINED_INTEGER;

 /* UPDATE THE NUMBER OF EMPLOYEES */

 XintEditTableFillCell(widget, cb->column, nrows, (caddr_t) &total);

 /* CLEAN UP */

 XtFree(data);
}

214 EditTable Programming Guide

EXAMPLES
Summation Callback 6

c3.fm5 Page 215 Thursday, January 22, 2009 12:34 PM
Summation Callback
The following callback is for summing up the columns of numbers
static void
SumUp(widget, unused, cb)
Widget widget;
caddr_t unused;
XintEditTableValidateValueCallbackStruct *cb;
{
 float total = 0;
 float *data;
 int i, nrows;

 data = (float *) XintEditTableGetColumnData(widget,
cb->column, &nrows);

 /* RETRIEVE THE NEW VALUE OF THE CURRENT CELL */

 if (cb->new_value_string) {
 if (sscanf(cb->new_value_string, “%f”, &total) != 1)
 cb->cell_value.float_value = XintUNDEFINED_FLOAT;
 } else
 cb->cell_value.float_value = XintUNDEFINED_FLOAT;

 /* ADD VALUES OF ALL CELLS EXCEPT CURRENT AND LAST CELL */
 for (i = 0; i < nrows - 1; i++) {
 if (i + 1 != cb->row && data[i] != XintUNDEFINED_FLOAT)
 total += data[i];
 }

 /* UPDATE THE TOTAL */
 XintEditTableFillCell(widget, cb->column, nrows, (caddr_t) &total);

 /* CLEAN UP */
 XtFree(data);
}

EditTable Programming Guide 215

EXAMPLES
Example 4: Widget In A Cell6

c3.fm5 Page 216 Thursday, January 22, 2009 12:34 PM
Example 4: Widget In A Cell
The following example illustrates how to include a simple widget and a more
complicated widget in sets of cells in an edit table. The complete source code for the
example will be found in checkbook.c in the examples directory.

Figure 25. Example of a Widget In A Cell Application
216 EditTable Programming Guide

EXAMPLES
Inserting a PushButton Widget 6

c3.fm5 Page 217 Thursday, January 22, 2009 12:34 PM
Inserting a PushButton Widget
The following code inserts PushButton widgets in column one. We set
XmNcellWidgetSetResources to True. This causes button color, label, alignment
and sensitivity to be set automatically. Thus, we do not need to register callback
XmNcellWidgetDisplayCallback.
 /*
 * Create a PushButton widget that will be used for column 1.
 */
 range.row = 1;
 range.rows = 0;
 range.column = 1;
 range.columns = 1;
 XtVaCreateWidget(“ “, xmPushButtonWidgetClass, Table,
 XmNcellWidgetRange, &range,
 XmNcellWidgetSetResources, True,
 XmNcellWidgetOverrideTranslations, True,
 NULL);

Note: The name of the PushButton is set to a blank (“ “) so that it appears to be
empty in all of the buttons which have no value assigned.
EditTable Programming Guide 217

EXAMPLES
Example 4: Widget In A Cell6

c3.fm5 Page 218 Thursday, January 22, 2009 12:34 PM
Inserting a ToggleButton Widget
The following code creates ToggleButton widgets in column seven. Since the state
of the ToggleButton is not set automatically, we register callback
XmNcellWidgetDisplayCallback. We also must update the table whenever the
ToggleButton is activated. This is done by registering callback
XmNvalueChangedCallback on the ToggleButton.
/*
 * Add the cell widget callback to EditTable
 */
 XtAddCallback(Table, XmNcellWidgetDisplayCallback,
 (XtCallbackProc) CellWidgetCallback, (XtPointer)

 NULL);

 /*
 * Create a ToggleButton widget that will be used for column 7.
 */
 range.row = 1;
 range.rows = 0;
 range.column = 7;
 range.columns = 1;
 toggle = XtVaCreateWidget(“ “, xmToggleButtonWidgetClass, Table,
 XmNcellWidgetRange, &range,
 XmNcellWidgetSetResources, False,
 XmNcellWidgetOverrideTranslations, True,
 NULL);

/*
 * Add the value changed callback to the “toggle” widget.
 */
 XtAddCallback(toggle, XmNvalueChangedCallback, ToggleCallback,
 Table);
218 EditTable Programming Guide

EXAMPLES
Updating Resources 6

c3.fm5 Page 219 Thursday, January 22, 2009 12:34 PM
Updating Resources
The following code illustrates a callback to update resources when the ToggleButton
widget is drawn to a particular cell.
static void CellWidgetCallback(widget, data, cb)

 Widget widget;
 XtPointer data;
 XintEditTableCellWidgetCallbackStruct *cb;

{
 int *state_ptr;
 int state;

 if (XmIsToggleButton(cb->widget)) {

 state_ptr = (int *) XintEditTableGetCellData(widget, cb->column,
 cb->row);

 if (state_ptr)
 state = *state_ptr;
 else
 state = False;

 XtVaSetValues(cb->widget,
 XmNset, state,
 XmNbackground, cb->resources->background,
 NULL);
 }
}

EditTable Programming Guide 219

EXAMPLES
Example 4: Widget In A Cell6

c3.fm5 Page 220 Thursday, January 22, 2009 12:34 PM
Updating the Edit Table
The following callback updates the edit table when the ToggleButton is “toggled”.
static void ToggleCallback(widget, table, cb)

 Widget widget;
 Widget table;
 XmToggleButtonCallbackStruct *cb;

{
 int column, row;
 int value = cb->set;

 /*
 * Find the location of the toggle and update the table.
 */
 XintEditTableGetCellPointerPosition(table, &column, &row);
 XintEditTableFillCellNoUpdate(table, column, row, &value);
}

220 EditTable Programming Guide

Index

edittabACT.fm Page 221 Thursday, January 22, 2009 12:35 PM
Actions
AnnotationEdit 114
AnnotationEndDrag 114
AnnotationEndSelect 114
AnnotationExtendDrag 114
AnnotationExtendSelect 114
AnnotationResizeHandlers 114
AnnotationStartDrag 114
AnnotationStartSelect 114
ChangeCursorMask 52
DrawCursor 52
EditTableClearAllSelections 115
EditTableClearSelection 115
EditTableConfirmEdit 115
EditTableCopyColumn 116
EditTableCopyRows 116
EditTableDeleteColumns 116
EditTableDeleteRows 116
EditTableEditCell 114
EditTableEndDrag 116
EditTableEndSelect 115
EditTableEnterCell 115
EditTableEnterTable 116
EditTableExtendDrag 116
EditTableExtendSelect 115
EditTableInsertColumns 115
EditTableInsertRows 115
EditTablePasteColumn 116
EditTablePasteRows 116
EditTableResizeHandler 116
EditTableStartDrag 116
EditTableStartSelect 115
EditTableTraverseCurrent 116
EditTableUndeleteColumns 116
EditTableUndeleteRows 116

EndAreaSelection 53
EndDrawCursor 52
ExtendAreaSelection 53
Increment 52
InitAreaSelection 52
InitDrawCursor 52
Locator 52
MotifDragStart 52
NextTabGroup 52, 116
ObjectCancel 54
ObjectEdit 53
ObjectEditEnd 54
ObjectEditStart 53
ObjectPointAdd 54
ObjectPointDelete 54
ObjectSelect 53
Page 52
PreviousTabGroup 52, 116
SelectionCallback 52
TextAbandonEdit 116
TextConfirmEdit 116
Transform3D 54
Transform3DEnd 54
Transform3DStart 54
TraverseCurrent 52

Callback Reasons
XintCR_AREA_SELECTION 56
XintCR_CALCLULATE_CELL_HEIGHT 119
XintCR_CALCULATE_CELL_HEIGHT 130
XintCR_CALCULATE_CELL_WIDTH 119, 130
XintCR_CELL_COPY 119, 126
XintCR_CELL_MOVE 119, 126
XintCR_CELL_RESIZE 119, 121, 126
XintCR_CHECK_EDIT_MODE 119, 124
EditTable Programming Guide 221

Index

edittabACT.fm Page 222 Thursday, January 22, 2009 12:35 PM
Callback Reasons (continued)
XintCR_COLMUN_RELEASE 126
XintCR_COLUMN_COPY 119, 126
XintCR_COLUMN_FREEZE 126
XintCR_COLUMN_MOVE 119, 126
XintCR_COLUMN_RESIZE 119, 121, 126
XintCR_COPY 48, 56
XintCR_CUT 49, 56
XintCR_DELETE_COLUMN 119, 131
XintCR_DELETE_ROW 120, 131
XintCR_DISPLAY_CELL 119, 121, 130
XintCR_DOUBLE_CLICK 97, 119
XintCR_DRAG 56, 119
XintCR_DROP 56, 119
XintCR_EDIT_COLUMN_ANNOTATION 119,

128
XintCR_EDIT_ROW_ANNOTATION 119, 128
XintCR_GET_COLUMN_ANNOTATION 120,

129
XintCR_GET_ROW_ANNOTATION 120, 129
XintCR_INSERT_COLUMN 119, 131
XintCR_INSERT_OBJECT 56
XintCR_INSERT_ROW 120, 131
XintCR_LOCATOR 56
XintCR_OBJECT_DESELECTION 56
XintCR_OBJECT_SELECTION 50, 56
XintCR_PASTE 51, 56
XintCR_QUERY_CELL_WIDGET 119, 122
XintCR_ROW_COPY 119, 126
XintCR_ROW_FREEZE 126
XintCR_ROW_MOVE 119, 126
XintCR_ROW_RELEASE 126
XintCR_ROW_RESIZE 119, 121, 126
XintCR_RUBBERBAND 56
XintCR_RUBBERBAND_END 56
XintCR_RUBBERBAND_START 56
XintCR_SELECT_CELL 120, 131
XintCR_SELECT_COLUMN 119, 131
XintCR_SELECT_ROW 120, 131
XintCR_SELECTION 51, 56
XintCR_TRAVERSE_CELL_DOWN 120, 132

XintCR_TRAVERSE_CELL_FOCUS _IN 120
XintCR_TRAVERSE_CELL_FOCUS_IN 132
XintCR_TRAVERSE_CELL_LEFT 120, 132
XintCR_TRAVERSE_CELL_POINTER 120, 132
XintCR_TRAVERSE_CELL_RIGHT 120, 132
XintCR_TRAVERSE_CELL_UP 120, 132
XintCR_UPDATE_CELL_WIDGET 119, 122
XintCR_VALIDATE_VALUE 120, 133

Data Structures
EditTableReportAttributes 172
EditTableReportLayout 171
EditTableReportRange 171
FieldAttr 172
XintCellWidgetRange 111
XintCellWidgetResources 123
XintEditObjectAreaSelectionCallbackStruct 57
XintEditObjectCallbackStruct 57
XintEditObjectDragDropCallbackStruct 58
XintEditObjectEditCallbackStruct 58
XintEditObjectInsertCallbackStruct 59
XintEditObjectLocatorCallbackStruct 60
XintEditObjectResourceDialogCallbackStruct 60
XintEditObjectRubberbandCallbackStruct 61
XintEditObjectSelectionCallbackStruct 59
XintEditTableCellAttributesCallbackStruct 119
XintEditTableCellWidgetCallbackStruct 119
XintEditTableCheckEditModeCallbackStruct 119,

124
XintEditTableDoubleClickCallbackStruct 119, 125
XintEditTableDragCallbackStruct 119, 125
XintEditTableDragDropCallbackStruct 119, 127
XintEditTableEditAnnotationCallbackStruct 119,

128
XintEditTableFormatAnnotationCallbackStruct 120,

129
XintEditTableFormatCellCallbackStruct 119, 130
XintEditTableOperationCallbackStruct 119, 120,

131
XintEditTableTraverseCellCallbackStruct 120, 132
XintEditTableValidateValueCallbackStruct 120, 133
222 EditTable Programming Guide

Index

edittabACT.fm Page 223 Thursday, January 22, 2009 12:35 PM
Defined Constants
XC_crosshair 47
XintADJUST_ALL 90, 108
XintADJUST_BOTTOM 90, 193
XintADJUST_LEFT 90, 194
XintADJUST_NONE 83, 90
XintADJUST_RIGHT 90, 194
XintADJUST_TOP 90, 108, 196
XintALIGNMENT _CENTER 88
XintALIGNMENT_ CENTER 86
XintALIGNMENT_BEGINNING 101, 107, 110,

173
XintALIGNMENT_BEGINNING_BOTTOM 93,

150, 159
XintALIGNMENT_BEGINNING_MIDDLE 84,

93, 150, 159
XintALIGNMENT_BEGINNING_TOP 93, 150,

159
XintALIGNMENT_CENTER 89, 101, 107, 110,

173
XintALIGNMENT_CENTER_BOTTOM 93, 150,

159
XintALIGNMENT_CENTER_MIDDLE 93, 150,

159
XintALIGNMENT_CENTER_TOP 93, 150, 159
XintALIGNMENT_END 101, 107, 110, 173
XintALIGNMENT_END _BOTTOM 93
XintALIGNMENT_END_BOTTOM 150, 159
XintALIGNMENT_END_MIDDLE 93, 150, 159
XintALIGNMENT_END_TOP 93, 150, 159
XintALL_PAGES 173
XintAS_NEEDED 192, 194
XintBOTTOM_LEFT 195
XintBOTTOM_RIGHT 192, 195
XintBOTTOM_WINDOW 199
XintCGM_VDC_TYPE_INTEGER 35
XintCGM_VDC_TYPE_REAL 35
XintCOLOR 38, 39, 167
XintCOLUMN_DEFAULT 150
XintCOLUMN_EDITABLE 84, 95, 97, 124, 149,

158

XintCOLUMN_HORIZONTAL 96
XintCOLUMN_NON_EDITABLE 95, 97, 124,

149, 158
XintCOLUMN_VERTICAL 84, 96
XintCONVERSION 170
XintCROSS_HAIR_CURSOR 48, 64
XintDECREMENT 148, 178
XintDEFAULT_TABLE_SELECT 183
XintEDIT_ADJUST 50
XintEDIT_INSERT 50, 67
XintEDIT_MOVE 50
XintEDIT_NONE 47, 50
XintEDIT_RUBBERBAND 50, 51
XintEDIT_SHAPE 50
XintEDIT_SIZE 50
XintEDIT_TABLE_FROZEN_CELLS_TEXT 163
XintEDIT_TABLE_FROZEN_COLUMN_SUBTA

BLE 164
XintEDIT_TABLE_FROZEN_COLUMN_TEXT

163
XintEDIT_TABLE_FROZEN_INTERSECTION_S

UBTABLE 164
XintEDIT_TABLE_FROZEN_ROW_SUBTABLE

164
XintEDIT_TABLE_FROZEN_ROW_TEXT 163
XintEDIT_TABLE_MAIN_SUBTABLE 164
XintEDIT_TABLE_MAIN_TEXT 163
XintFROM_L_TO_R 171
XintFROM_T_TO_B 171
XintFRONT_PAGE_ONLY 173
XintGRID_LINE_COLUMNWISE 100
XintGRID_LINE_CROSSWISE 86, 100
XintGRID_LINE_DASHED 98, 100
XintGRID_LINE_DOUBLE _DASHED 98, 100
XintGRID_LINE_NONE 98
XintGRID_LINE_ROWWISE 100
XintGRID_LINE_SHADOW_IN 100
XintGRID_LINE_SHADOW_OUT 100
XintGRID_LINE_SOLID 85, 86, 98, 100
XintHORIZONTAL_SCROLLBAR 199
XintINCREMENT 148, 178
XintLEFT_WINDOW 199
EditTable Programming Guide 223

Index

edittabACT.fm Page 224 Thursday, January 22, 2009 12:35 PM
Defined Constants (continued)
XintLOCAL_CALLBACK_AFTER 144
XintLOCAL_CALLBACK_BEFORE 144
XintLOCAL_CALLBACK_EXCLUSIVE 144
XintMONOCHROME 38, 39, 167
XintNO_CALLBACK 184
XintNO_CONVERSION 170
XintNO_FILL 40
XintORIENTATION _AUTOMATIC 38, 40
XintORIENTATION _LANDSCAPE 38, 40
XintORIENTATION_LANDSCAPE 168, 169, 171
XintORIENTATION_PORTRAIT 38, 40, 168, 169,

171
XintPAGE_DECREMENT 148, 178
XintPAGE_INCREMENT 148, 178
XintPARALLEL_TO_AX IS 89
XintPARALLEL_TO_AXIS 86, 102, 110
XintPLACEMENT_BOTTOM 99, 101, 102, 107,

173
XintPLACEMENT_LEFT 85, 99, 109, 110, 173
XintPLACEMENT_LEFT _RIGHT 89
XintPLACEMENT_LEFT_RIGHT 88, 109, 110,

173
XintPLACEMENT_NONE 101, 107, 109, 173
XintPLACEMENT_RIGHT 99, 109, 110, 173
XintPLACEMENT_TOP 85, 88, 99, 101, 102, 107,

173
XintPLACEMENT_TOP_ BOTTOM 86
XintPLACEMENT_TOP_BOTTOM 86, 101, 102,

173
XintRIGHT_WINDOW 199
XintROW_ANNOTATION 152, 153
XintSELECT_CELL 144, 162, 184
XintSELECT_COLUMN 144, 162, 184
XintSELECT_NONE 162
XintSELECT_ROW 144, 162, 184
XintSHADOW_ETCHED_IN 108, 196
XintSHADOW_ETCHED_OUT 108, 196
XintSHADOW_IN 108, 192, 196
XintSHADOW_NONE 88, 108, 196
XintSHADOW_OUT 108, 196

XintSPAN_ALWAYS 106
XintSPAN_DATA_AND_EMPTY 106
XintSPAN_DATA_ONLY 106
XintSPAN_NONE 87, 106
XintSTACKED 102, 110
XintSTATIC 194
XintTO_FIRST 148, 178
XintTO_LAST 148, 178
XintTOP_LEFT 195
XintTOP_RIGHT 195
XintTOP_WINDOW 199
XintTYPE_CAST 170
XintTYPE_DOUBLE 95, 97, 104, 150, 159
XintTYPE_FLOAT 95, 97, 104, 150, 159
XintTYPE_INTEGER 95, 97, 104, 150, 159
XintTYPE_LONG 95, 97, 104
XintTYPE_LONG_INTEGER 150, 159
XintTYPE_NONE 4, 97
XintTYPE_POINTER 95, 97, 99, 150, 159
XintTYPE_SHORT 95, 97, 104, 150, 159
XintTYPE_STRING 84, 87, 95, 97, 104, 150, 159,

174
XintUNDEFINED_DOUBLE 113
XintUNDEFINED_FLOAT 113
XintUNDEFINED_INTEGER 113
XintUNDEFINED_LONG 113
XintUNDEFINED_POINTER 113
XintUNDEFINED_SHORT 113
XintUNDEFINED_STRING 113
XintUNIT_CHARACTER 83, 92
XintUNIT_PIXEL 92
XintUPDATE_ALL 186
XintVERTICAL_SCROLLBAR 199
XintVIEWPORT 199
XintWARNING_NONE 32
XintWARNING_POST 32
XintWARNING_PRINT 32
224 EditTable Programming Guide

Index

edittabACT.fm Page 225 Thursday, January 22, 2009 12:35 PM
Functions
XintCGMDrawBox 34
XintCGMGetDimensions 34
XintCGMPixelToInch 34
XintCGMSetVDCType 35
XintCreateEditObject 64
XintCreateEditTable 143
XintCreateScroll 198
XintDrawCursorFromData 64
XintEditObjectBack 64
XintEditObjectCopy 64
XintEditObjectCurrent 65
XintEditObjectCut 65
XintEditObjectDeselectAll 65
XintEditObjectDeselectObject 65
XintEditObjectDestroyObject 65
XintEditObjectFreeze 66
XintEditObjectFront 66
XintEditObjectGetIntersectList 66
XintEditObjectGetList 67
XintEditObjectGroup 67
XintEditObjectInsert 67
XintEditObjectLower 68
XintEditObjectManageResourceDialog 68
XintEditObjectMove 68
XintEditObjectNew 69
XintEditObjectOpen 69
XintEditObjectPaste 69
XintEditObjectRaise 69
XintEditObjectReadFile 69
XintEditObjectSave 70
XintEditObjectSaveAs 70
XintEditObjectSelectAll 70
XintEditObjectSelectList 70
XintEditObjectSelectObject 70
XintEditObjectSetEditMode 71
XintEditObjectSize 71
XintEditObjectUngroup 71
XintEditObjectWriteFile 71
XintEditTableAbandonEdit 143
XintEditTableAddLocalCallback 143

XintEditTableAddToSelection 144
XintEditTableAssociateData 145
XintEditTableCellFlash 145
XintEditTableCellSpanGetRange 146
XintEditTableCellSpanSetRange 146
XintEditTableChangeColumnVisibility 146
XintEditTableChangeRowVisibility 147
XintEditTableClearAllSelections 147
XintEditTableClearCells 147
XintEditTableClearSelectionByNumber 147
XintEditTableColumnScroll 148
XintEditTableConfirmEdit 148
XintEditTableCopyColumn 148
XintEditTableCopyRows 149
XintEditTableDefineColumnFormat 149
XintEditTableDeleteColumns 151
XintEditTableDeleteRows 151
XintEditTableFillCell 151
XintEditTableFillCellNoUpdate 152, 186
XintEditTableFillColumnAnnotation 153
XintEditTableFillColumnData 153
XintEditTableFreezeColumn 153
XintEditTableFreezeRow 154
XintEditTableFreezeUpdate 154, 185
XintEditTableGetCellBackground 154
XintEditTableGetCellData 155
XintEditTableGetCellFont 155
XintEditTableGetCellForeground 155
XintEditTableGetCellGeometry 156
XintEditTableGetCellHeight 156
XintEditTableGetCellPixmap 156
XintEditTableGetCellPointerPosition 157
XintEditTableGetCellWidget 157
XintEditTableGetCellWidth 157
XintEditTableGetColumnAnnotationAlignment 158
XintEditTableGetColumnAttributes 158
XintEditTableGetColumnData 160
XintEditTableGetColumnUserData 160
XintEditTableGetFrozenColumns 160
XintEditTableGetFrozenRows 161
XintEditTableGetHiddenColumns 161
XintEditTableGetHiddenRows 161
EditTable Programming Guide 225

Index

edittabACT.fm Page 226 Thursday, January 22, 2009 12:35 PM
Functions (continued)
XintEditTableGetSelectionByNumber 162
XintEditTableGetSelectionCount 162
XintEditTableGetSubtable 164
XintEditTableGetTextChild 163
XintEditTableGetVisibleArea 164
XintEditTableInsertColumns 165
XintEditTableInsertRows 165
XintEditTableIsCellDefined 165
XintEditTableIsColumnFrozen 166
XintEditTableIsColumnHidden 166
XintEditTableIsRowFrozen 166
XintEditTableIsRowHidden 166
XintEditTableOutputAscii 167
XintEditTableOutputPostscript 167
XintEditTableOutputSimplePS 168
XintEditTableOutputSimplePS2 169
XintEditTableOutputSylkFile 169
XintEditTablePasteColumns 170
XintEditTablePasteRows 174
XintEditTablePSReportStyle 170
XintEditTableReadAscii 174
XintEditTableReleaseColumn 175
XintEditTableReleaseRow 176
XintEditTableRemoveAllLocalCallbacks 177
XintEditTableRemoveLocalCallbacks 177
XintEditTableReorderColumns 176
XintEditTableReorderRows 176
XintEditTableRowScroll 177
XintEditTableSetCellBackground 178
XintEditTableSetCellDisplayAttributes 178
XintEditTableSetCellFont 179
XintEditTableSetCellForeground 179
XintEditTableSetCellHeight 180
XintEditTableSetCellPixmap 180
XintEditTableSetCellPixmapList 181
XintEditTableSetCellPointerPosition 181
XintEditTableSetCellWidth 182
XintEditTableSetColumnAnnotationAlignment 182
XintEditTableSetColumnFont 182
XintEditTableSetColumnUserData 183

XintEditTableSetListBehavior 183
XintEditTableSetRowFont 184
XintEditTableSetSelection 184
XintEditTableSortByColumn 185
XintEditTableUndeleteRows 185
XintEditTableUnfreeze 186
XintEditTableUpdateDataDisplay 185, 186
XintGetWidgetSize 35
XintHorizontalPixelToUser 36
XintHorizontalUserToPixel 36
XintOutputCGM 36
XintOutputMontageCGM 37
XintOutputMontagePostscript 38
XintOutputPostscript 39
XintPostscriptGetDefaults 40
XintPostscriptSetBackground 40
XintPostscriptSetDefaults 41
XintScrollGetChild 199
XintScrollScrollToPosition 200
XintVerticalPixelToUser 41
XintVerticalUserToPixel 41

Resources
XmNaddChildrenToTabGroup 192
XmNadjustTextMaxLength 82
XmNalignment 19, 112
XmNallowDrag 47
XmNallowDrop 47
XmNallowPartialCellDisplay 82
XmNareaSelectionCallback 47, 56
XmNasciiFilename 82
XmNautoColumnRowMove 82
XmNautoMarginAdjust 83
XmNautomaticColumnAnnotation 83
XmNautomaticRowAnnotation 83
XmNautoScrollingInterval 83
XmNautoTextOverflowMarkerSize 83
XmNbackground 19, 112
XmNbottomAnnotationHeight 192
XmNbottomMargin 83
XmNcellAttributesCallback 83, 119
226 EditTable Programming Guide

Index

edittabACT.fm Page 227 Thursday, January 22, 2009 12:35 PM
XmNcellHeightData 83
XmNcellHighlightColor 83
XmNcellPointerBorderThickness 83
XmNcellPointerColor 83
XmNcellPointerRetained 83
XmNcellSizeUnit 83
XmNcellWidgetDisplayCallback 83, 119
XmNcellWidgetOverrideTranslations 111
XmNcellWidgetRange 111
XmNcellWidgetSetResources 111
XmNcellWidthData 83
XmNcheckEditModeCallback 83, 119
XmNclipAnnotation 83
XmNcolumnAlignmentData 83
XmNcolumnAnnotationData 84
XmNcolumnAnnotationFont 84
XmNcolumnAnnotationForeground 84
XmNcolumnAnnotationTranslations 84
XmNcolumnCallback 84, 119
XmNcolumnDataFormatData 84
XmNcolumnDataTypeData 84
XmNcolumnEditModeData 84
XmNcolumnFontIndexData 84
XmNcolumnOrientation 84
XmNcopyCallback 47, 56
XmNcursorType 47
XmNcutCallback 47, 56
XmNdefaultCellHeight 84
XmNdefaultCellWidth 84
XmNdefaultColumnAlignment 84
XmNdefaultColumnDataFornat 84
XmNdefaultColumnDataType 84
XmNdefaultColumnEditMode 84
XmNdoubleClickCallback 84, 119, 125
XmNdoubleClickInterval 84
XmNdragCallback 85, 119, 125
XmNdragCursorType 85
XmNdragDropCallback 47, 56, 119, 127
XmNdragForeground 85
XmNdragGridLineStyle 85
XmNdragShowCellContents 85
XmNeditAnnotationCallback 85, 119

XmNeditObjectCallback 47
XmNfirstVisibleColumn 85
XmNfirstVisibleRow 85
XmNflip 47
XmNfontList 19, 112
XmNfontPath 32
XmNfontTable 85
XmNforeground 19, 112
XmNformatCellCallback 85, 119
XmNformatColumnAnnotationCallback 85, 120
XmNformatRowAnnotationCallback 85, 120
XmNfreezeUpdate 85
XmNfrozenColumnPlacement 85
XmNfrozenRowPlacement 85
XmNgridLineForeground 85
XmNgridLineHighlightColor 85
XmNgridLineHighlightThickness 85
XmNgridLineOrientation 86
XmNgridLineStyle 86
XmNgridLineWidth 86
XmNhandleColor 47
XmNhandleSize 47
XmNhorizontalAnnotationPlacement 86
XmNhorizontalAutoSized 192
XmNhorizontalCellMargin 86
XmNhorizontalInsideMargin 192
XmNhorizontalLabel 86
XmNhorizontalLabelAlignment 86
XmNhorizontalLabelFont 86
XmNhorizontalLabelOrientation 86
XmNhorizontalLabelPlacement 86
XmNhorizontalOutsideMargin 192
XmNhorizontalScrollBar 192
XmNhorizontalScrollIncrement 86
XmNinsertObjectCallback 47, 56
XmNlabelForeground 86
XmNlabelString 19, 112
XmNleftAnnotationWidth 192
XmNleftMargin 86
XmNlocatorCallback 47, 56
XmNnumberOfColumns 86
XmNnumberOfRows 86
EditTable Programming Guide 227

Index

edittabACT.fm Page 228 Thursday, January 22, 2009 12:35 PM
Resources (continued)
XmNnumberOfVisibleColumns 86
XmNnumberOfVisibleRows 86
XmNobjectDeselectionCallback 47, 56
XmNobjectEditMode 47
XmNobjectSelectionCallback 47, 56
XmNoverrideTextTranslations 86
XmNpasteCallback 47, 56
XmNpointSelectionTolerance 48
XmNreadOnlyCellColor 87
XmNreferenceChar 87
XmNreferenceFontIndex 87
XmNresourceDialogCallback 48, 60
XmNrightAnnotationWidth 192
XmNrightMargin 87
XmNrowAnnotationData 87
XmNrowAnnotationDataFormat 87
XmNrowAnnotationDataType 87
XmNrowAnnotationFont 87
XmNrowAnnotationForeground 87
XmNrowAnnotationTranslations 87
XmNrowCallback 87, 120
XmNrubberbandCallback 48, 56
XmNscrollBarDisplayPolicy 192
XmNscrollBarExtend 192
XmNscrollBarPlacement 192
XmNselectCellCallback 87, 120
XmNselectionCallback 48, 56
XmNselectionScroll 87
XmNsensitive 19, 112
XmNshadowThickness 192
XmNshadowType 192
XmNshowAnnotationGridLines 87
XmNshowTextOverflowMarker 87
XmNspanCellPointer 87
XmNspanMode 87
XmNtableFont 87
XmNtableForeground 88
XmNtextOverflowMarkerColor 88
XmNtextOverflowMarkerSize 88
XmNtextThreeD 88

XmNtitleAlignment 88
XmNtitleBackground 88
XmNtitleFont 88
XmNtitleForeground 88
XmNtitleMargin 193
XmNtitlePlacement 88
XmNtitleShadowThickness 88
XmNtitleShadowType 88
XmNtitleString 88
XmNtopAnnotationHeight 193
XmNtopMargin 88
XmNtraverseCellCallback 88, 120
XmNuseOriginalData 88
XmNvalidateValueCallback 88, 120
XmNverticalAnnotationPlacement 88
XmNverticalAutoSized 193
XmNverticalCellMargin 88
XmNverticalInsideMargin 193
XmNverticalLabel 89
XmNverticalLabelAlignment 89
XmNverticalLabelFont 89
XmNverticalLabelOrientation 89
XmNverticalLabelPlacement 89
XmNverticalOutsideMargin 193
XmNverticalScrollBar 193
XmNverticalScrollIncrement 89
XmNwarning 32

Subjects
actions

EditObject 52–54
EditTable 114–116, 118

add
column 5, 165
row 5, 165

annotation 7
automatic 7, 91
edit 98
placement 93, 101, 109
user-defined 7, 94

ASCII 15
228 EditTable Programming Guide

Index

edittabACT.fm Page 229 Thursday, January 22, 2009 12:35 PM
ASCII files 14, 89
ASCII input 174
ASCII output 167
C++ 23
callback 211–213

cell attributes 134
column annotation 136
double click 135
drag 135
EditObject 56–61
EditTable 119–137
format cell 135
row annotation 136
select 57
select cell 136
select, copy, delete, insert row 136
select, copy, insert, delete column 134
structures 57–61, 75, 121–133
traverse 119, 132, 137
validate 137

cell
attributes 12
background color 178
border 91
edit 24
enter data 152
flashing 145
font 179
foreground 179
get geometry 156
height 96, 180
pixmap 180
protection 12, 95, 134
selection 10
setting attributes 178
spanning 13, ??–21, 105, 146
user-defined format 94, 99
widget ??–20
width 96, 182

cell pointer 91
CGM 15
ChartObject 17

ChartObject library 28
column

copy 14, 114–116
data format 94, 96
define format 150
deletion 151
enter data 153
font 182, 183
get attributes 158
hide 146
horizontal 11, 96
insert 6, 165
move 14, 114–116
resize 14
scrolling 148
selection 10, 48, 50, 51, 57
set annotation 153
visibility 10, 89, 98, 103

CompBase
functions 33–41
resources 32

composite data (pointer data type) 12, 95, 97
configuring table as a list 183
creating INT widgets 29
cursor

movement 7, 15, 16, 55, 117
type 14

data 13, 17
entry and validation 24, 89
formatting 8, 13, 130
handling 4
table with no data 4

data types 3, 12, 95, 97
database display and browsing 24, 113
DataObject 17
display update control 99
double click event 119, 125, 135
drag and drop 15–16, 114–116
EditObject

actions 52–54
callbacks 56–61
create objects 44
EditTable Programming Guide 229

Index

edittabACT.fm Page 230 Thursday, January 22, 2009 12:35 PM
Subjects (continued)
create widget 44, 64
delete objects 44, 65
functions 62–71
insert objects 67
resources 46–51
translations 55

EditTable
actions ??–118
callbacks ??–137
functions ??–186
resources 82–112
translations ??–118

font 94, 96, 179, 211
font path 32
font table 99, 209
freeing data structures 29
freeing INT widgets 29
freeze column 9, 153
freeze row 9, 154, 206, 208
functions

CompBase 33–41
EditObject 62–71
EditTable 137–186
Scroll 198–200

getting resource values 30
Graphic object

edit 26
retrieval 27
storage 27

Graphic objects 25, 29
hardcopy 25, 33–41

report style 170
icon 11
interactive

copy 14, 59, 125, 126
move 14, 68, 125
resize 14, 121, 125, 126

intercell grid separators 8, 98, 100–101
internal widget 197
internationalization 19

list behavior 183
margins 5, 82–90, 101, 102, 103, 108–109
micro-formatting 8
Motif

drag and drop 15–16, 48–??, 58
output formats 15
overflow marker 106
partial display 10
pixmap 11, 180
pointer data type 12
PostScript 15
PostScript output 167
protection 12, 24
real-time monitoring and analysis 23
resize

column 5
row 5

resources
CompBase 32
EditObject 46–51
EditTable 82–112
Scroll 192–197

row
copy 14, 114–116
deletion 151
font 184
hide 147
insert 6
move 14, 114–116
resize 14
selection 10
visibility 10, 98, 103

row scrolling 177
saving object into a file 70
Scroll widget 29

example 206–208
functions ??–200
internal widgets 197
layout 191
resources 192–197

selection 10, 114–116
augmenting 144
230 EditTable Programming Guide

Index

edittabACT.fm Page 231 Thursday, January 22, 2009 12:35 PM
clear 147
get 162
setting 184

setting resource values 30
sharing data width ChartObject 145
sorting 185
spreadsheets 23
subtables 164
SYLK 15, 169
table dimensions 5, 74, 102–103
table orientation 11
text

3D 106
actions 118
alignment 6, 101
cell 6
color 6
edit 24, 112
font 6, 99, 102, 112
orientation 102
placement 102
row/column annotation 6
size 6
table title 6

translations 103, 105
EditObject 55
EditTable 117–118

undefined values 113
unfreeze column 175
unfreeze row 176
unions

XintCellValue 130
validation 12, 24, 133
visibility 10
Widget In A Cell 18–20, 111

example 112, 214–218
EditTable Programming Guide 231

Index

edittabACT.fm Page 232 Thursday, January 22, 2009 12:35 PM
232 EditTable Programming Guide

	preface.pdf
	How To Use This Manual
	Overview
	Organization of This Manual
	Notation Conventions

	preface.pdf
	How To Use This Manual
	Overview
	Organization of This Manual
	Notation Conventions

	c2-intro.pdf
	Introduction 1
	Overview
	EditTable Widget
	Widget Components
	EditTable Features

	Data Handling
	Data Types

	Table data values
	Data Formatting
	Flexible Data Handling
	Dataless Tables
	Basic Features
	Figure 1. Understanding the Basic Features
	Margins and Table Dimensions
	Text Alignment, Size, and Font Type
	Text Editing
	Column/Row Formatting
	Cursor Movement

	Advanced Features
	User-defined or Automatic Annotation
	Figure 2. Table Annotation Options

	Inter-cell Grid Separators
	Figure 3. Cells With/Without Grid Line Separators

	Micro-formatting
	Figure 4. Varied Text Fonts and Multi-line Cells

	Row/Column Freezing
	Figure 5. Example of Frozen Columns and/or Rows

	Row/Column Visibility and Partial Displays
	Figure 6. Columns With/Without Displayed Data

	Free-style Selection
	Figure 7. Row, Column, and Random Selections

	Horizontal Columns
	Icon Selection and Display

	.
	Figure 8. Example of Pixmap Background
	Cell Validation and Locking
	Cell Attributes
	Displaying Composite Data (Pointer Data Type)
	User-defined Data Formatting
	Figure 9. Pointer Type Data in User-formatted Display

	Cell Spanning
	Importing Data from ASCII Files
	Interactive Move, Copy, and Resize
	Multiple Output Formats
	Motif Drag and Drop

	Default behavior for drag and drop
	DataObject Connection
	Figure 10. Multiple Views of a Data Object

	Widget in a Cell
	Figure 11. Example of a Widget In a Cell Application
	Cell Resources
	Cell Spanning
	Figure 12. Cell and Annotation Spanning

	Typical Applications
	Figure 13. Example of EditTable Applications
	Spreadsheets
	Real-time Monitoring and Analysis
	Figure 14. Example of Real-time Data Monitoring

	Data Entry and Validation
	Database Display and Browsing

	Integration with Other INT Widgets
	Figure 15. Overall Widget Hierarchy
	Hardcopy Output and Coordinate Mapping (XintCompBase)
	Enhanced Scrolling (XintScroll)
	Graphic Objects (XintGraphic)
	Figure 16. Hierarchy for Graphic Objects

	Graphic Object Editing, Storage, and Retrieval (XintEditObject)
	Figure 17. Example of Graphics Superimposed on Table

	ChartObject Library

	Instance Network
	CompBase Class
	EditObject Widget
	EditTable Widget
	Scroll Widget
	Graphic Objects

	Creating and Freeing INT Widgets

	Creating INT widgets
	Freeing INT widgets
	Freeing data structures
	Obtaining and Setting Resource Values

	Obtaining resource values
	Setting resource values

	c2-edito.pdf
	EditObject Widget Class 3
	Overview
	Creating an EditObject Widget
	Coordinate System
	Creating And Deleting Objects
	Object Selection
	Object Editing
	Object Display

	Input/Output
	Clipboard
	Locator
	EditObject Widget Appearance
	Figure 18. EditObject Containing a Chart and Various Graphic Objects

	Inherited Behavior and Resources
	Resources
	XmNallowDrag
	XmNallowDrop
	XmNareaSelectionCallback
	XmNcopyCallback
	XmNcursorType
	XmNcutCallback
	XmNdragDropCallback
	XmNeditObjectCallback
	XmNflip
	XmNhandleColor
	XmNhandleSize
	XmNinsertObjectCallback
	XmNlocatorCallback
	XmNobjectDeselectionCallback
	XmNobjectEditMode
	XmNobjectSelectionCallback
	XmNpasteCallback
	XmNpointSelectionTolerance
	XmNresourceDialogCallback
	XmNrubberbandCallback
	XmNselectionCallback
	EditObject Actions
	EditObject Translations
	EditObject Callbacks
	XintEditObjectAreaSelectionCallbackStruct
	XintEditObjectCallbackStruct
	XintEditObjectDragDropCallbackStruct
	XintEditObjectEditCallbackStruct
	XintEditObjectSelectionCallbackStruct
	XintEditObjectInsertCallbackStruct
	XintEditObjectLocatorCallbackStruct
	XintEditObjectResourceDialogCallbackStruct
	XintEditObjectRubberbandCallbackStruct

	EditObject Functions
	XintCreateEditObject
	XintDrawCursorFromData
	XintEditObjectBack
	XintEditObjectCopy
	XintEditObjectCurrent
	XintEditObjectCut
	XintEditObjectDeselectAll
	XintEditObjectDeselectObject
	XintEditObjectDestroyObject
	XintEditObjectFreeze
	XintEditObjectFront
	XintEditObjectGetIntersectList
	XintEditObjectGetList
	XintEditObjectGroup
	XintEditObjectInsert
	XintEditObjectLower
	XintEditObjectManageResourceDialog
	XintEditObjectMove
	XintEditObjectNew
	XintEditObjectOpen
	XintEditObjectPaste
	XintEditObjectRaise
	XintEditObjectReadFile
	XintEditObjectSave
	XintEditObjectSaveAs
	XintEditObjectSelectAll
	XintEditObjectSelectList
	XintEditObjectSelectObject
	XintEditObjectSetEditMode
	XintEditObjectSize
	XintEditObjectUngroup
	XintEditObjectWriteFile

	c2-editt.pdf
	EditTable Widget 4
	Overview
	Data Organization
	Table Size
	Table Orientation
	Data Structures
	Supported Data Types

	Using EditTable with Scroll
	Creating an EditTable Widget
	Displaying a Table
	Formatting Data
	Updating a Table
	Editing Operations
	Table Edit
	Annotation Edits
	Column Edits
	Row Edits
	Cell Edits
	Input Validation
	Traversing the Table
	Cutting and Pasting
	Interactive Move, Copy and Resize
	Frozen Columns
	Frozen Rows
	Cell, Column and Row Indices
	Column Annotation
	Row Annotation
	Margin Size Specification
	Sub-tables
	Column and Row Visibility

	Drawing Graphics on a Table
	Graphic Object Coordinate System
	EditTable Widget Appearance
	Figure 19. Example of EditTable as a Child of INT Scroll

	EditTable Resources
	Inherited Behavior and Resources
	Defined Resources

	Defined resources
	XmNadjustTextMaxLength
	XmNallowPartialCellDisplay
	XmNasciiFilename
	XmNautoColumnRowMove
	XmNautoMarginAdjust
	XmNautoScrollingInterval
	XmNautoTextOverflowMarkerSize
	XmNautomaticColumnAnnotation
	XmNautomaticRowAnnotation
	XmNbottomMargin
	XmNcellAttributesCallback
	XmNcellHeightData
	XmNcellHighlightColor
	XmNcellPointerBorderThickness
	XmNcellPointerColor
	XmNcellPointerRetained
	XmNcellSizeUnit
	XmNcellWidgetDisplayCallback
	XmNcellWidthData
	XmNcheckEditModeCallback
	XmNclipAnnotation
	XmNcolumnAlignmentData
	XmNcolumnAnnotationData
	XmNcolumnAnnotationFont
	XmNcolumnAnnotationForeground
	XmNcolumnAnnotationTranslations
	XmNcolumnCallback
	XmNcolumnDataFormatData
	XmNcolumnDataTypeData
	XmNcolumnEditModeData
	XmNcolumnFontIndexData
	XmNcolumnOrientation
	XmNdefaultCellHeight
	XmNdefaultCellWidth
	XmNdefaultColumnAlignment
	XmNdefaultColumnDataFormat
	XmNdefaultColumnDataType
	XmNdefaultColumnEditMode
	XmNdoubleClickCallback
	XmNdoubleClickInterval
	XmNdragCallback
	XmNdragCursorType
	XmNdragForeground
	XmNdragGridLineStyle
	XmNdragShowCellContent
	XmNeditAnnotationCallback
	XmNfirstVisibleColumn
	XmNfirstVisibleRow
	XmNfontTable
	XmNformatCellCallback
	XmNformatColumnAnnotationCallback
	XmNformatRowAnnotationCallback
	XmNfreezeUpdate
	XmNfrozenColumnPlacement
	XmNfrozenRowPlacement
	XmNgridLineForeground
	XmNgridLineHighlightColor
	XmNgridLineHighlightThickness
	XmNgridLineOrientation
	XmNgridLineStyle
	XmNgridLineWidth
	XmNhorizontalAnnotationPlacement
	XmNhorizontalCellMargin
	XmNhorizontalLabel
	XmNhorizontalLabelAlignment
	XmNhorizontalLabelFont
	XmNhorizontalLabelOrientation
	XmNhorizontalLabelPlacement
	XmNhorizontalScrollIncrement
	XmNlabelForeground
	XmNleftMargin
	XmNnumberOfColumns
	XmNnumberOfRows
	XmNnumberOfVisibleColumns
	XmNnumberOfVisibleRows
	XmNoverrideTextTranslations
	XmNreadOnlyCellColor
	XmNreferenceChar
	XmNreferenceFontIndex
	XmNrightMargin
	XmNrowAnnotationData
	XmNrowAnnotationDataFormat
	XmNrowAnnotationDataType
	XmNrowAnnotationFont
	XmNrowAnnotationForeground
	XmNrowAnnotationTranslations
	XmNrowCallback
	XmNselectCellCallback
	XmNselectionScroll
	XmNshowAnnotationGridLines
	XmNshowTextOverflowMarker
	XmNspanCellPointer
	XmNspanMode
	XmNtableFont
	XmNtableForeground
	XmNtextOverflowMarkerColor
	XmNtextOverflowMarkerSize
	XmNtextThreeD
	XmNtitleAlignment
	XmNtitleBackground
	XmNtitleFont
	XmNtitleForeground
	XmNtitlePlacement
	XmNtitleShadowThickness
	XmNtitleShadowType
	XmNtitleString
	XmNtopMargin
	XmNtraverseCellCallback
	XmNuseOriginalData
	XmNvalidateValueCallback
	XmNverticalAnnotationPlacement
	XmNverticalCellMargin
	XmNverticalLabel
	XmNverticalLabelAlignment
	XmNverticalLabelFont
	XmNverticalLabelOrientation
	XmNverticalLabelPlacement
	XmNverticalScrollIncrement
	Constraint Resources
	XmNcellWidgetRange
	XmNcellWidgetSetResources
	XmNcellWidgetOverrideTranslations

	Widget in a Cell Example

	Code
	EditTable Data

	Data structures
	Application-defined Data Structures
	Specifying Undefined Values
	EditTable Actions
	EditTable Translations
	Actions With No Default Translations
	Changing the Default Translation Table
	Specifying Translations for Annotation Actions
	Text Actions

	EditTable Callbacks
	XintEditTableCellAttributesCallbackStruct
	XintEditTableCellWidgetCallbackStruct
	XintEditTableCheckEditModeCallbackStruct
	XintEditTableDoubleClickCallbackStruct
	XintEditTableDragCallbackStruct
	XintEditTableDragDropCallbackStruct
	XintEditTableEditAnnotationCallbackStruct
	XintEditTableFormatAnnotationCallbackStruct
	XintEditTableFormatCellCallbackStruct
	XintEditTableOperationCallbackStruct
	XintEditTableTraverseCellCallbackStruct
	XintEditTableValidateValueCallbackStruct
	Cell Attributes Callback
	Check Edit Mode Callback
	Column Callback
	Double-click Callback
	Drag Callback
	Edit Annotation Callback
	Format Cell Callback
	Format Column Annotation Callback
	Format Row Annotation Callback
	Row Callback
	Select Cell Callback
	Traverse Cell Callback
	Validate Value Callback

	EditTable Functions
	XintCreateEditTable
	XintEditTableAbandonEdit
	XintEditTableAddLocalCallback
	XintEditTableAddToSelection
	XintEditTableAssociateData
	1. If a DataLabel object oriented along the X direction is found, it is used to provide column annotation.
	2. If a DataLabel object oriented along the Y direction is found, it is used to provided row annotation.
	3. Each DataSampled found is used to fill a column.

	XintEditTableCellFlash
	XintEditTableCellSpanGetRange
	XintEditTableCellSpanSetRange
	XintEditTableChangeColumnVisibility
	XintEditTableChangeRowVisibility
	XintEditTableClearAllSelections
	XintEditTableClearCells
	XintEditTableClearSelectionByNumber
	XintEditTableColumnScroll
	XintEditTableConfirmEdit
	XintEditTableCopyColumn
	XintEditTableCopyRows
	XintEditTableDefineColumnFormat
	XintEditTableDeleteColumns
	XintEditTableDeleteRows
	XintEditTableFillCell

	Warning: This function is slow and should not be used to update a whole table or a large portion a table. Use XintEditTableFillCellNoUpdate instead.
	XintEditTableFillCellNoUpdate
	XintEditTableFillColumnAnnotation
	XintEditTableFillColumnData
	XintEditTableFreezeColumn
	XintEditTableFreezeRow
	XintEditTableFreezeUpdate
	XintEditTableGetCellBackground
	XintEditTableGetCellData
	XintEditTableGetCellFont
	XintEditTableGetCellForeground
	XintEditTableGetCellGeometry
	XintEditTableGetCellHeight
	XintEditTableGetCellPixmap
	XintEditTableGetCellPointerPosition
	XintEditTableGetCellWidget
	XintEditTableGetCellWidth
	XintEditTableGetColumnAnnotationAlignment
	XintEditTableGetColumnAttributes
	XintEditTableGetColumnData
	XintEditTableGetColumnUserData
	XintEditTableGetFrozenColumns
	XintEditTableGetFrozenRows
	XintEditTableGetHiddenColumns
	XintEditTableGetHiddenRows
	XintEditTableGetSelectedCells
	The function returns False if no selection exists. Otherwise it returns True.
	XintEditTableGetSelectedColumns
	The function returns False if no selection exists. Otherwise it returns True.
	XintEditTableGetSelectedRows
	The function returns False if no selection exists. Otherwise it returns True.
	XintEditTableGetSelectionByNumber
	XintEditTableGetSelectionCount
	XintEditTableGetTextChild
	XintEditTableGetSubtable
	XintEditTableGetVisibleArea
	XintEditTableInsertColumns
	XintEditTableInsertRows
	XintEditTableIsCellDefined
	XintEditTableIsColumnFrozen
	XintEditTableIsRowFrozen
	XintEditTableIsColumnHidden
	XintEditTableIsRowHidden
	XintEditTableOutputAscii
	XintEditTableOutputPostscript
	XintEditTableOutputSimplePS
	XintEditTableOutputSimplePS2
	XintEditTableOutputSylkFile
	XintEditTablePasteColumns
	XintEditTablePSReportStyle
	XintEditTablePasteRows
	XintEditTableReadAscii
	XintEditTableReleaseColumn
	XintEditTableReleaseRow
	XintEditTableReorderColumns
	XintEditTableReorderRows
	XintEditTableRemoveAllLocalCallbacks
	XintEditTableRemoveLocalCallbacks
	XintEditTableRowScroll
	XintEditTableSetCellBackground
	XintEditTableSetCellDisplayAttributes
	XintEditTableSetCellFont
	XintEditTableSetCellForeground
	XintEditTableSetCellHeight
	XintEditTableSetCellPixmap
	XintEditTableSetCellPixmapList
	XintEditTableSetCellPointerPosition
	XintEditTableSetCellWidth
	XintEditTableSetColumnAnnotationAlignment
	XintEditTableSetColumnFont
	XintEditTableSetColumnUserData
	XintEditTableSetListBehavior
	XintEditTableSetRowFont
	XintEditTableSetSelection
	XintEditTableSortByColumn
	XintEditTableUndeleteColumns
	XintEditTableUndeleteRows
	XintEditTableUnfreeze
	XintEditTableUpdateDataDisplay

	c2-scrol.pdf
	Scroll Widget Class 5
	Overview
	Scroll Children
	Creating a Scroll Widget
	Specifying Annotation and Annotation Placement
	Specifying Scrollbar Display Policy and Placement
	Specifying a 3-D look for the Viewing Areas
	Synchronized Scrolling
	Connecting Scrollbars to Scroll Widgets
	Appearance
	Figure 20. Example of a Shared Scrollbar

	Scroll Layout
	Figure 21. Scroll Layout

	Figure key
	Inherited Behavior and Resources

	Resources
	XmNaddChildrenToTabGroup
	XmNbottomAnnotatationHeight
	XmNhorizontalAutoSized
	XmNhorizontalInsideMargin
	XmNhorizontalOutsideMargin
	XmNhorizontalScrollBar
	XmNleftAnnotationWidth
	XmNrightAnnotationWidth
	XmNscrollBarDisplayPolicy
	XmNscrollBarExtend
	XmNscrollBarPlacement
	XmNshadowThickness
	XmNshadowType
	XmNtitleMargin
	XmNtopAnnotationHeight
	XmNverticalAutoSized
	XmNverticalInsideMargin
	XmNverticalOutsideMargin
	XmNverticalScrollBar
	Scroll Components
	Scroll Functions
	XintCreateScroll
	XintScrollGetChild
	XintScrollScrollToPosition

	c3.pdf
	Examples 6
	Overview
	How To Make and Run Example Programs
	Makefile
	Running an Example Program

	Example 1: Creating a Simple Table
	Figure 22. Example of a Simple Table with Integer Data

	Code
	Example 2: Scrollable Table with User Data
	Figure 23. Example of Scrollable Table with User Data

	Code
	Example 3: Change Fonts and Add Totals
	Figure 24. Example of Changing Fonts and Add Totals
	Global Definitions
	Additional Resources
	Additional Callbacks
	Set Table Font
	Number of Employees Callback
	Summation Callback

	Example 4: Widget In A Cell
	Figure 25. Example of a Widget In A Cell Application
	Inserting a PushButton Widget
	Inserting a ToggleButton Widget
	Updating Resources
	Updating the Edit Table

	edittabTOC.pdf
	EditTable Programming Guide
	How To Use This Manual
	Chapter 1- Introduction
	Chapter 2- CompBase Widget Metaclass
	Chapter 3- EditObject Widget Class
	Chapter 4- EditTable Widget
	Chapter 5- Scroll Widget Class
	Chapter 6- Examples

	c2-compb.pdf
	CompBase Widget Metaclass 2
	Overview
	Inherited Behavior and Resources
	Resources
	XmNfontPath
	XmNwarning
	CompBase Functions
	XintCGMDrawBox
	XintCGMGetDimensions
	XintCGMPixelToInch
	XintCGMSetVDCType
	XintGetWidgetSize
	XintHorizontalPixelToUser
	XintHorizontalUserToPixel
	XintOutputCGM
	XintOutputMontageCGM
	XintOutputMontagePostscript
	XintOutputPostscript
	XintPostscriptGetDefaults
	XintPostscriptSetBackground
	XintPostscriptSetDefaults
	XintVerticalPixelToUser
	XintVerticalUserToPixel

